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A Robust H  Speed Tracking Controller for
Underwater Vehicles via Particle Swarm

Optimization
Mohammad Pourmahmood Aghababa, Mohammd Esmaeel Akbari

Abstract— This paper presents an H  controller designing method for robust speed tracking of underwater vehicles, using
Particle Swarm Optimization (PSO). Nonlinearity mapping of the underwater vehicles model to a nominal linear model, by
employing a linear controller for a nonlinear model, is one of the main contributions of this paper. For reaching the linear H
controller, the nonlinear models linearized around an operating point. Both nonlinear and linearized models are discussed. A
brief explanation of H  synthesis is given. Also frequency dependent weighting functions are used for penalizing tracking errors,
setpoint commands and measured outputs noises using PSO. Obtained controller is reduced order to achieve a lower order
controller. After simulating the reduced order H  controller it is embedded into the nonlinear model. By nonlinear simulations,
robustness and efficient performance of the H  controller is shown. Control efforts of actuators revealed no saturation, therefore
it is feasible to implement.

Index Terms— H  controller, underwater vehicles, particle swarm optimization, robustness.
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1  INTRODUCTION
n the past two decades, underwater vehicles have be-
come an intense area of oceanic researches because of

their emerging applications, such as scientific inspection
of deep sea, exploitation of underwater resources, long
range survey, oceanographic mapping, underwater pipe-
lines tracking and so on. Developing a control system that
can achieve the aforementioned goal is challenging for a
variety of reasons such as: the nonlinearity of the dynam-
ics, the multivariable character of the vehicle with coupl-
ing among different channels, the consistent amount of
uncertainty  due  to  the  lack  of  precise  knowledge  of  hy-
drodynamic drag coefficients and evaluation of external
disturbance due to environmental interaction.

Several control techniques have been proposed in lite-
rature to deal with uncertainty. Sliding mode controller
for trajectory control of underwater vehicles, neglecting
the cross coupling terms, is proposed in [2]. Multivariable
sliding mode control for diving, steering and speed con-
trol of underwater vehicles with decoupled design is used
in [3].

An  H  autopilot for subzero II that had two sub-
controllers, the longitudinal controller for the forward
speed and depth, and the lateral controller for the head-
ing angle is presented in [4]. A reduced order H  control

that had three SISO decoupled controllers for the for-
ward speed, heading angle and depth control was ap-
plied to subzero III in [5]. A time delay control law for
robust trajectory control of underwater vehicles is pro-
posed in [6].

In this paper, designing of an H  controller for robust
speed tracking is the major purpose. Position control can-
not be performed without suitable speed tracking. Here,
both linear and angular speeds are considered to be con-
trolled. Using Particle Swarm Optimization (PSO),
weighting functions, that capture the disturbance charac-
teristics and performance requirements are selected to
take advantage of H design algorithm.

For designing the speed controller, the nonlinear mod-
el is linearzed around an operating point. Afterwards,
parameters changing mapped to the linear model as un-
certainties. Weighted noises are also added to measured
outputs. Then weighting functions for setpoint com-
mands and tracking errors are obtained. It is assumed
that all states can be measured by sensors, so that the
state estimator is not necessary. After designing the H
controller and order reduction, it is embedded to full non-
linear model. Tracking robustness and efficiency of the
proposed controller is shown by nonlinear simulation.
The required control efforts of thrusters are possible to
realize.

The proposed method has the following characteris-
tics: a) the problem of speed tracking is considered as a
new work, b) designed controller is MIMO (Multi Input-
Multi Output) without neglecting the cross coupling
terms, c) the H  controller is designed by using PSO, and
d) the linear controller robustness is shown when it is
embedded to the nonlinear model.
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The rest of this paper is preceded as follows. Section 2
presents the nonlinear and linearized motion equations of
underwater vehicles.  In Section 3, a general scheme of H
control synthesis is firstly explained. Then, the main pro-
cedure of PSO method is given. In Section 4, an H  con-
troller is designed for speed tracking aim of the underwa-
ter vehicles and numerical simulations are performed.
Finally, some conclusions are given in section 5.

2  MOTION EQUATIONS AND DYNAMICS OF
UNDERWATER VEHICLES

2.1 The Nonlinear Model of Underwater Vehicles
Throughout the marine robotics literature a vehicle’s six
degrees of freedom dynamic equations are expressed as
[1]:

( ) ( ) ( )Mv C v v D v v g                                    (1)
( )J v 1 2( ) { ( ), ( )}J diag J J                       (2)

where s(.)=sin(.), c(.)=cos(.), t(.)=tan(.),  is  the  position
and orientation of the vehicle in the Earth fixed frame,

6 1R , v is linear and angular velocity of the vehicle in
the body fixed frame, 6 1R , M is the inertia matrix in-
cluding added mass, 6 6R , C(v) is a matrix consisting
Coriolis and centripetal terms, 6 6R , D(v) is a matrix
consisting damping or drag terms, 6 6R , ( )g  is the
vector  of  restoring  forces  and  moments  due  to  gravity
and buoyancy, 6 1R , and  is the vector of forces and
moments of propulsion, 6 1R .The matrix ( )J  con-
verts velocity in a body fixed frame, v, to velocity in an
earth fixed frame, , as shown in Fig. 1. In fact 1( )J and

2 ( )J convert linear and angular velocities in a body
fixed frame, v, to velocities in an earth fixed frame, ,
respectively. A detailed derivation of these nonlinear eq-
uations of motion can be found in [1]. Below a small
summary of the modeled phenomena is given.

1) Mass and Inertia, M: In matrix M, two inertial com-
ponents are accounted for [1],
M=MRB+MA, M=MT, M>0                                         (3)

The rigid body inertial matrix, MRB, represents the
mass and inertia terms due to the mass and other physical
characteristics of the craft. However in a dense medium
such as water, a considerable contribution to the mass

originates from the medium. This so called added mass is
accounted for by the matrix MA.

2) Coriolis and Centripetal forces, C(v): For matrix
C(x), a similar discourse can be held. Both the coriolis and
centripetal forces are forces that are proportional to mass
and inertia. Hence, the matrix consists of two matrices:

( ) ( ) ( )RB AC v C v C v T
RB RBC C                             (4)

where CRB represents forces and moments due to the
mass and physical characteristics of the craft, CA(x) incor-
porates the terms originating from the added mass.

3) Damping terms, D(v): In the damping matrix, D(x),
four terms are combined [1]:
D(x)=Dp+ Ds(x) + Dw + DM(x)                                             (5)
where Dp is the potential damping, Ds(x) is linear and
quadratic skin friction, Dw is wave drift damping and
DM(x) is damping due to vortex shedding.

Potential damping is introduced due to forces on the
body when the latter is forced to oscillate. Skin friction
effects can be shown to constitute both a linear and a qu-
adratic term. Wave drift damping only plays a major role
at the surface where it can be interpreted as added resis-
tance due to incoming waves. Damping due to vortex
shedding is a result of the non-conservative nature of a
moving system in water with respect to energy. The visc-
ous damping force due to this phenomenon is a function
of the relative velocity of the craft, its physical characteris-
tics and the density and viscosity of the water.

4) Gravitation and Buoyancy, ( )g : This term models
the restoring forces which result from gravitation and
buoyancy.

5) Thruster model, : Usually, propellers are used as
propulsion devices for underwater vehicles. The load
torque Q from the propeller, and the thrust force T, are
then usually written as [1]:

nn)(JKDQ Q
5  , nnJKDT T )( 0

4                  (6)
where n is rotational velocity of the thruster,  is the mass
density of water, D is the diameter of the propeller, KQ

and  KT are the torque and the thrust coefficients of the
propeller, and J0 is the advance ratio.

In this paper, the thrusters are assumed to be driven by
DC motors. DC motors are usually controlled by velocity
feedback. It is assumed that six propellers are erected in
six freedom degrees. Therefore, ni will  be  the  physical
input related to thruster number i. It can be also shown
that an algebraic relation exists between the thrust  of
propeller i and the physical input. Therefore, the thrust
will be chosen as input in the model ui = Ti.

2.2 The Linearzed Model for Underwater Vehicles
The nonlinear speed system of the underwater vehicles
can be described in state space form by defining a six di-
mensional state vector x=(u, v, w, p, q, r) as follows.

uBuxfx ,)(                                                       (7)
11 )),()()(()( MBgxDxCMxf      (8)

For a linear controller design, it is necessary to extract
the linearzed model from the nonlinear model around a
representative operating point. In this paper, the nominal
value of rotational speed of the propellers is considered
100 rpm. Using this assumption, the operating point is

Fig. 1. Inertial and body coordinate frames
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obtained:
x0=(1, 1, 1, 1, 1, 1 )                                                                  (9)
The linearized model is:

xCyuBxAx ,
],,,,,[,][ 654321urq,p, w,v,u,x T

Trq,p, w,v,u,y ][                                                       (10)
where A and B are 6× 6 matrices and C is a 6×1 vector,

i  i=1, 2, …, 6 are the propeller forces, explained in the
previous section. [u, v, w] and [p, q, r] are the linear and
angular speeds of the underwater vehicle in a body fixed
coordinate system, respectively.

The step response of linearized model is shown in Fig.
2. As seen in this figure, the step response is not tracked
and system modes are not decoupled.

3  METHODOLOGIES
3.1 H  Synthesis Approach
Figure 3 shows a tracking problem, with disturbance re-
jection, measurement noise, and control input signal limi-
tations. K is a controller to be designed, G is the system,
as nonlinearity uncertainties modeled, to be controlled
and  Wnoise,  Wcmd and  Wperf are  weighting  functions  for
sensor noises, setpoint commands and tracking errors,
respectively. A reasonable design objective would be to
design K to keep tracking errors and control input signal
small for all reasonable reference commands, sensor nois-
es, and external force disturbances.

Hence, a natural performance objective is the closed
loop gain from exogenous influences (reference com-
mands, sensor noise, and external force disturbances) to
regulated variables (tracking errors and control input
signal). Specifically, let T denote the closed loop mapping
from the outside influences to the regulated variables.
Good performance is associated with T being small. The
mathematical objective of H control is to make the closed
loop MIMO transfer function Ted to satisfy ||Ted|| <1.
The  weighting  functions  are  used  to  scale  the  in-

put/output transfer functions such that when ||Ted||  <
1, the relationship between e and d is suitable.

Without lack of generality, a mathematical overview of
H  synthesis is as follows. Figure 4 shows a standard
feedback system, where w is the input vector of exogen-
ous signals, e is the output vector of errors to be reduced,
y is the vector of measurements that are available for
feedback and u is the vector of external force signals. Let
Tew denote the closed loop transfer matrix from w to e.
The H synthesis problem is to find, among all controllers
that yield a stable closed loop system, a controller K that
minimizes the infinity norm ||Ted|| . Throughout this
paper we assume that all states are available for mea-
surement, that is, y equals the internal state of the genera-
lized plant P.

Suppose that a state space realization for P can be writ-
ten as

uBwBxCx 211                                                       (11)
xyuDxCe ,121                                                     (12)

and assume that (A, B2)  is  stabilizable,  D12 has indepen-
dent columns and the system with input u and output e
has no zeros on the imaginary axis.

Theorem. Suppose > 0 is a given positive number.

Let
2221

1211)(
HH
HH

H  denote the Hamiltonian matrix

with entries
H11=A-B2(D12TD12)-1D12TC1

H12= 2 B1B1T-B2(D12TD12)-1B2T

H21=-C1T(I- D12 (D12TD12)-1 D12T)C1

H22=-AT+C1TD12 (D12TD12)-1 B2T                                           (13)
Then, there exists a stabilizing controller K such that

||Ted||  <  if and only if: i) )(H  has no eigenvalues
on the imaginary axis and there exist a basis for the spec-
tral subspace X- )(H  of )(H  of the form [X1T,  X2T]
where X1 and  X2 are square matrices of appropriate di-

mensions and X1 is invertible. ii) X( )=X2X1-1 is positive
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Fig. 2. Step response of open loop linear model

Fig. 3. Generalized Performance Block Diagram

Fig. 4. Standard feedback configuration
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semi definite. In this case, one such controller is K(s) = F,
where
F=-(D12TD12)-1[D12TC1+B2TX( )]                                         (14)

Existence and computation of  X( ) is a standard ma-
trix algebra problem that can be solved using a standard
technique for solving Riccati  equations based on the real
Schur decomposition [9].

3.2 Particle Swarm Optimization
A particle swarm optimizer is a population based stochas-
tic optimization algorithm modeled after the simulation
of the social behavior of bird flocks. PSO is similar to ge-
netic algorithm (GA) in the sense that both approaches
are population-based and each individual has a fitness
function. Furthermore, the adjustments of the individuals
in PSO are relatively similar to the arithmetic crossover
operator used in GA. However, PSO is influenced by the
simulation of social behavior rather than the survival of
the fittest. Another major difference is that, in PSO each
individual benefits from its history whereas no such me-
chanism exists in GA. In a PSO system, a swarm of indi-
viduals (called particles) fly through the search space.
Each particle represents a candidate solution to the opti-
mization problem. The position of a particle is influenced
by the best position visited by itself (i.e. its own expe-
rience) and the position of the best particle in its neigh-
borhood.  When the neighborhood of  a  particle  is  the en-
tire swarm, the best position in the neighborhood is re-
ferred to as the global best particle and the resulting algo-
rithm is referred to as a gbest PSO. When smaller neigh-
borhoods are used, the algorithm is generally referred to
as a lbest PSO. The performance of each particle (i.e. how
much close the particle is to the global optimum) is meas-
ured using a fitness function that varies depending on the
optimization problem.
The global  optimizing model  proposed by Shi  and Eber-
hart [7]  is as follows:

)xG(
crand)xP(cRANDvwv

ibest

2ibest1i1i

        (15)
1ii1i vxx                                                                        (16)

where vi is the velocity of particle i, xi is the particle posi-
tion, w is the inertial weight. c1 and  c2 are the positive
constant parameters, Rand and rand are the random func-
tions in the range [0,1], Pbest is the best position of the ith

particle and Gbest is the best position among all particles
in the swarm.
The  inertia  weight  term,  w,  serves  as  a  memory  of  pre-
vious velocities. The inertia weight controls the impact of
the previous velocity: a large inertia weight favors explo-
ration, while a small inertia weight favors exploitation [7].
As such, global search starts with a large weight and then
decreases with time to favor local search over global
search [7].
It is noted that the second term in equation (15)

represents cognition, or the private thinking of the par-
ticle when comparing its current position to its own best.
The third term in equation (15), on the other hand,
represents the social collaboration among the particles,
which compares a particle’s current position to that of the
best particle [8]. Also, to control the change of particles’
velocities, upper and lower bounds for velocity change is
limited to a user-specified value of Vmax. Once the new
position of a particle is calculated using equation (16), the
particle, then, flies towards it [7]. As such, the main pa-
rameters used in the PSO technique are: the population
size (number of birds); number of generation cycles; the
maximum change of a particle velocity Vmax and w.
Generally, the basic PSO procedure works as follows: the
process is initialized with a group of random particles
(solutions). The ith particle is represented by its position as
a point in search space. Throughout the process, each par-
ticle moves about the cost surface with a velocity. Then
the particles update their velocities and positions based
on the best solutions. This process continues until stop
condition(s) is satisfied (e.g. a sufficiently good solution
has been found or the maximum number of iterations has
been reached).

4  H CONTROLLER DESIGNING PROCEDURE
4.1 Weight Selection and Building Model

Uncertainty
To take advantage of H  design algorithm, we formu-

late the design as a closed loop gain minimization prob-
lem. So we select weighting functions that capture the
disturbance characteristics and performance requirements
to help normalize the corresponding frequency depen-
dent gain constraints.

Wcmd is included in H  control problems that require
tracking of a reference command. Wcmd shapes the norma-
lized reference command signals into the reference sig-
nals that we expect to occur. It describes the magnitude
and the frequency dependence of the reference com-
mands generated by the normalized reference signal. Ref-
erence commands for underwater vehicles linear and an-
gular speeds are usually flat. This means that underwater
vehicle speed does not change frequently and has no high
oscillations. Therefore, Wcmd, is selected equal to

Bs
AWcmd

                                                                         (17)

where A and B are two constants that are determined
using PSO.

Wperf weights the difference between the response of
the closed loop system and the ideal model. Often we
might want accurate matching of the ideal model at low
frequencies and require less accurate matching at higher
frequencies, in which case Wperf is flat at low frequencies,
rolls off at first or second order, and flattens out at a
small, nonzero value at high frequencies. Therefore, the
error weights penalize setpoint tracking errors on u, v, w,
p, q and r. Hence, Wperf is considered as follows, for all of
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them.

E
Ds

CWperf
                                                                 (18)

as A and B; C, D and E are three constants that are found
using PSO.

Wnoise represents frequency domain models of sensor
noise. Each sensor measurement feedback to the control-
ler has some noise, which is often higher in one frequency
range than another.  The weighting function for the sen-
sors would be small at low frequencies, gradually in-
crease in magnitude as a first order or second order sys-
tem, and level out at high frequencies. Then a high pass
filter is selected for weighting functions of measured
states.

Gs
FsWnoise

                                                                        (19)

where F and G constants are found by PSO.
To complete the uncertainty model, changing of the

underwater vehicle speeds due to vehicle parameters
changing, that can be produced by hydrodynamic drag
coefficients and propellers rotational speeds and external
disturbance, should be considered in controller designing
procedure. In this paper it performed by evaluating the
underwater vehicle nonlinear behavior, when the men-
tioned vehicle parameters are changed reasonably, and
mapping it to the linear model. Therefore, we will build
an uncertainty model that matches our estimate of uncer-
tainty in the physical system as closely as possible. Be-
cause the amount of the model uncertainty or variability
typically depends on frequency, our uncertainty model
involves frequency-dependent weighting functions to
normalize modeling errors across frequency. The follow-
ing frequency dependent weighting function for both
linear and angular speeds is chosen.

Js
IHsW yuncertaint

                                                               (20)

where H, I and J constants are computed by PSO.

4.2 H Controller Design and Simulation
results

Now that all plant components, as illustrated in Figure 3,
are described and nonlinearity uncertainties and the
weighting functions are constructed. We can design a
desired H  controller. By using sysic function of MATLAB
Robust Control Toolbox, the weighted uncertain model is
built. Nonlinearity uncertainties are modeled by using
ultidyn function.

The  weighting  functions  unknown  parameters  are
computed using PSO. Therefore, minimizing a cost func-
tion, determining the vector P=[A, B, C, D, E, F, G, H, I, J]
is the main purpose. For doing this, a performance index
as a cost function- that should be minimized- must be
selected. The performance criterion is defined based on
some typical desired output specifications in the time
domain such as overshoot Mp, rise time Tr, settling time
Ts, and steady-state error Ess. Therefore, in this paper, a
time domain performance criterion defined by

6

1

6

1

1)(min
,

i j
rijsijK TTePF

RQ

ssijpij EMe                                                           (21)
is used for evaluating the H  controller performance.
where Mpij is the maximum overshoot, Tsij is the settling
time, Trij is the rise time and Esij is the integral absolute
error of step response (i, j=1, 2, …, 6). Note that desired
steady state of diagonal modes of the system (i.e. i=j) is 1
while for non-diagonal modes (i.e. i j) it is desired to be 0.

]4,0[ is the weighting factor. The optimum selec-
tion of  depends on the designer’s requirement and the
characteristics of the plant under control. We can set  to
be smaller than 0.7 to reduce the overshoot and steady-
state error. On the other hand, we can set  to be larger
than 0.7 to reduce the rise time and settling time. If  is
set to 0.7, then all performance criteria (i.e. overshoot, rise
time, settling time, and steady-state error) will have the
same worth.

The minimization process is performed using PSO al-
gorithm. Step response of the plant is used to compute
four performance criteria Mp,  Ess,  Tr and  Ts in  the  time
domain. At first, the lower and upper bounds of the pa-
rameters are specified. Then a population of particles and
a velocity vector are initialized, randomly in the specified
range. Each particle represents a solution (i.e. weighting
functions parameters P) that its performance criterion
should be evaluated. This work is performed by compu-
ting  Mp,  Ess,  Tr,  and  Ts using the step response of the
plant, iteratively. Then, by using the four computed pa-
rameters, the performance criterion is evaluated for each
particle according. Then using equations (15) and (16) the
next likely better particles (solutions) are determined.
This process is repeated until a stopping condition is sa-
tisfied. In this stage, the particle corresponding to Gbest is
the optimal vector P. The optimal P is obtained as P=[0.15,
1.23, 98.47, 0.95, 0.11, 0.2, 1.51, 5.73, 1.29, 10.33].
After constructing the weights and the weighted plant,
we have recast the control problem as a closed loop gain
minimization. A gain minimizing controller for the uncer-
tain plant can be computed by using hinfsyn function. By
using this function, the desired H  controller (K in Figure
3) is obtained. The obtained controller has 12 inputs
(plant noisy outputs and weighted setpoint commands), 6
outputs for control forces of the plant, and 18 states, with
nominal performance 65.0min .  For  model  order  re-
duction, modred and balreal commands are used. Small
Henkel singular values indicate that the associated states
are weakly coupled. With discarding these negligible
Henkel singular values, the controller order is reduced to
11. Figure 5 shows the reduced order H  controller beha-
vior (step response), when it is engaged with the linear
plant. As illustrated in this figure, the H  controller can
control the vehicle to track the desired speeds, efficiently.

To assess the behavior of the designed H  controller, it
is embedded to the full nonlinear model of the underwa-
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ter vehicle as described in section 2.1 to form a closed
loop system. Simulations are implemented in MATLAB
Simulink. By the step response, the speed tracking quality
is examined. Figure 6 shows the robust behavior of the
designed controller against the nonlinearity of the nonli-
near model. As shown in this figure, when a step is simul-
taneously commanded to the actuators, the proposed H

controller can follow the signal with small errors. Fur-
thermore, steady state and amplitude errors are desirably

small. This means that the designed controller can behave
robustly against to the nonlinearities.

Figures 7 and 8 show the control efforts of the H  con-
troller with the linearized and the nonlinear models, re-
spectively. As illustrated in the figures, the control effort
of actuators reveals no saturation and so it is feasible to
implement.

5  CONCLUSIONS

A robust H  controller for underwater vehicles speed
tracking is introduced, in this paper. Nonlinearity of
nonlinear model is mapped onto the nominal linear
model  as  uncertainties. Using  frequency dependent
weighting functions that are determined by PSO, track-
ing errors and noise errors are eliminated, robustly. The
designed controller order is reduced. Using nonlinear
simulations, robust behavior of the proposed controller
is shown. The actuator control efforts were at the suita-
ble rang for implementation. The future work can focus
on control of underwater vehicles using nonlinear me-
thods hybrid with intelligent techniques.
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