
International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 33
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A Survey on Design Pattern Formalisms
A.V.Sriharsha, Dr. A.Rama Mohan Reddy

Abstract— In order to construct large and complex software systems which provide the necessary infrastructure in a systematic manner,
the focus in the development methodologies has switched in the last two decades from functional issues to structural issues. The
encapsulation principle is essential to both the object-oriented and the more recent component based software engineering paradigms.
Formal methods have been applied successfully to the verification of medium sized programs in protocol and hardware design. In this
paper a brief review about software systems and essential survey of formal methods has been presented.

Index Terms— Design Patterns, Formal Specification, Formalisation, Formalism, Patterns Languages, Software Architecture, Software
Process.

——————————  ——————————

1 INTRODUCTION
S software systems become more complex, the overall
system structure—or software architecture—becomes a
central design problem. A system’s architecture provides

a model of the system that suppresses implementation detail,
allowing the architect to concentrate on the analyses and deci-
sions that are most crucial to structuring the system to satisfy
its requirements.

One of the most challenging tasks in software development
is to assure reliability of systems being designed and con-
structed. This becomes even more important as the use of
software increases dramatically in embedded systems within
life-critical environments such as medicine, air traffic control
and other transportation systems, spacecraft control, and na-
tional defense weapons deployment and activation.

Recent research is demonstrating the clear advantages of a
more formal and mathematical approach to software require-
ments capture and design. Methods used in such an approach
are collectively called formal methods for software specifica-
tion, and these methods have been shown to provide added
reliability by modeling requirements in a way that they can
then be reasoned about in a rigorous and repeatable manner
[8],[9]. In general, the term formal methods refer to the use of
techniques employing formal logic and discrete mathematics
in the specification, design, and implementation of software
(and hardware) systems.

The formal world of software engineering is closely con-
nected to mathematics, in particular to mathematical logic and
algebra. It tries to build up a mathematical theory and a calcu-
lus to deal with programs and requirements specifications in
the style of a mathematical derivation. In the formal world,
any document has to obey a precisely defined syntax, and also
the semantics of documents is defined with mathematical pre-
cision. This is possible if the syntax has semantics in terms of

another mathematical formalism, or if a calculus of deduction
rules has been defined for the language under consideration,
or both. Programming languages already provide formal spec-
ification for the logic described to solve a problem. [3]

Formal methods involve a high degree of mathematical
formalism, and hence require a corresponding degree of
commitment on the part of the learner to achieve a level of
comfort approaching that most software developers have with
traditional requirements analysis methods, with their depend-
ence on English-like specifications.

Unfortunately, current representations of software architec-
ture are informal and ad hoc. While architectural concepts are
often embodied in infrastructure to support specific architec-
tural styles and in the initial conceptualization of a system
configuration, the lack of an explicit, independently-
characterized architecture or architectural style significantly
limits the benefits of software architectural design in current
practice.

2 PATTERNS
2.1 The Fundamental Role of Patterns
Patterns are an important part of today’s software engineering
practice. They are a proven way of capturing working solu-
tions to recurring problems, including their applicability,
trade-offs and consequences. So how do patterns factor into
the approach described above?

Architecture Patterns and Pattern Languages describe
blueprints for architectures that have been used successfully.
They can serve as an inspiration for building you own sys-
tem’s architecture. Once you have decided on using a pattern
(and have adapted it to your specific context) you can make
concepts defined in the pattern first class citizens of your DSL.
In other words, patterns influence the architecture, and hence
the grammar of the DSL.

Design Patterns, as their name implies, are more concrete,
more implementation-specific than architectural patterns. It is
unlikely that they will end up being central concepts in your
architecture DSL. However, when generating code from the
models, your code generator will typically generate code that
resembles the solution structure of a number of patterns. Note,

A

————————————————
• A.V.Sriharsha, is currently pursuing PhD in Computer Science and Engi-

neering, SV U College of Engineering (Autonomous), S V University,
Tirupati, India, E-mail: avsriharsha@yahoo.com.

• Dr. A. Rama Mohan Reddy, is Professor in Department of CSE, SV U

College of Engineering (Autonomous), S V University, Tirupati, India. E-
mail: ramamohansvu@yahoo.com

IJSER

http://www.ijser.org/
mailto:avsriharsha@yahoo.com
mailto:ramamohansvu@yahoo.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 34
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

however, that the generator cannot decide on whether a pat-
tern should be used: this is a tradeoff the (generator) develop-
er has to make manually.

2.2 Pattern Languages
Christopher Alexander’s work is based on the premise that the
quality without a name is an objective characteristic of things
and places. As an architect, Alexander wants to know where
this quality comes from and, more important, how to create it,
how to generate it. In the previous essay, “The Quality With-
out a Name,” we learned of the divorce centuries ago of beau-
ty from reality. That science could survive the divorce is un-
derstandable because science seeks to describe reality. Science
can live and succeed a long time before it needs to concern
itself with describing what makes something beautiful— when
something is contingent, as beauty seems to be in modern sci-
ence, there is little need to describe it. Art, on the other hand,
cannot ignore beauty or the quality without a name because
artists create things—paintings, sculptures, buildings—that
are beautiful, that have the quality without a name. There are
few fields that blend art and science: Architecture is one, and
computer science is another. Architects must design buildings
that can be built and architects have a “theory” about what
they do—at least architects like Alexander do. In computer
science we can describe theories of software, and we create
software.

2.3 Architecture Complexity
Architecture is typically either a very non-tangible, conceptual
aspect of a software system that can primarily be found in
Word documents, or it is entirely driven by technology. An
important problem facing software developers is the increas-
ing size and complexity of software systems. As the expecta-
tions of users of software increase, software developers are
expected to produce software to handle more difficult prob-
lems on a larger scale. As the complexity of software systems
increases, the overall system structure—or software architec-
ture—becomes a central design problem. Software architecture
provides a model of the large scale structural properties of
systems. These properties include the decomposition and in-
teraction among parts as well as global system issues such as
coordination, synchronization, and performance.

The software architecture of a system often appears in sys-
tem descriptions as a “boxes and lines” diagram. This diagram
structures the system in terms of particular kinds of computa-
tions and their composition. For example, the architecture of a
payroll system might decompose it into three parts: a data-
base, a report generator, and a data entry front end. These
parts appear as boxes in an architectural diagram. Lines con-
necting them indicate the use of queries and updates support-
ed by the database.

Software architecture raises the level of abstraction at
which developers can reason about their systems. A system’s
architecture provides a model of the system that suppresses
implementation detail and increases the independence of sys-
tem components, permitting many issues to be localized. By
suppressing these details at the architectural level, the archi-
tect can concentrate on the analyses and decisions that are
most crucial to the system structure.

A critical issue in software architecture is composition.
Once a system has been decomposed into components, they
must be re-composed to define the structure of the system as a
whole. An important class of composition in software architec-
ture is active interaction between components based on dis-
crete actions. Components each carry out some part of the to-
tal computation and interact to combine their behaviors, re-
sulting in a behavior for the system as a whole. Interactions
can be quite simple, such as in a batch model where each
component acts separately, one executing to completion, its
output providing the input to another component, which exe-
cutes in a separate phase. Interactions can also be quite com-
plex, such as network protocols of distributed systems, where
each component can initiate communication, generate mes-
sages, and respond to other components’ messages, where
buffering, reliability, and authentication of information passed
between components must be taken into account.

2.4 Architecture Style
Another important aspect of software architecture is the ex-
tension of design to exploit commonalities across families of
systems. When developing a particular system, designers tend
not to explore all possible alternatives for its architecture. In-
stead, they use specific patterns and idioms that are effective
for the domain in which they are working. These patterns and
idioms constrain the design space, permitting developers to
ignore complications and alternatives that are not relevant to
the system that they are developing. This exposes the issues
that are most important and thus helps the developer make
effective choices and locate the best solution more easily. We
term such a collection of patterns and idioms an architectural
style. Using a style has many benefits. A style focuses the de-
sign problem on techniques that are effective for a specific
class of systems. By recognizing that, for example, real-time
considerations are not of interest to a payroll database, devel-
opers can instead concentrate on developing a flexible and
general set of queries for the database. A collection of compo-
nents and connectors that work within a style enhances flexi-
bility and reuse. The use of particular models supports higher-
level design abstractions. If a style guarantees that a set of
properties hold, it can lead to more powerful analyses than a
general architecture permits.

2.5 Problems with Existing Architectures
Unfortunately, with few exceptions current exploitation of
software architecture and architectural style is informal and ad
hoc. While architectural concepts are exploited in infrastruc-
ture to support architectural styles and in the initial conceptu-
alization of a system configuration, the lack of an explicit, in-
dependently characterized architecture or architectural style
significantly limits the extent to which software architecture
can be exploited using current practices. Currently, architec-
tural configurations are typically described using informal box
and line diagrams in design documentation, providing little
information about the actual computations represented by
boxes, their interfaces, or the nature of the interactions be-
tween them.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 35
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2.6 The Need for a Theory of Architectural Connection
Large software systems require decompositional mechanisms
in order to make them tractable. By breaking a system into
pieces it becomes possible to reason about overall properties
by understanding the properties of each of the parts. Tradi-
tionally, Module Interconnection Languages (MILs) and Inter-
face Definition Languages (IDLs) have played this role by
providing notations for describing (a) computational units
with well-defined interfaces, and (b) compositional mecha-
nisms for gluing the pieces together. A key issue in design of a
MIL/IDL is the nature of that glue. Currently the predominant
form of composition is based on definition/use bindings.

In this model each module defines or provides a set of facil-
ities that are available to other modules and uses or requires
facilities provided by other modules. The purpose of the glue
is to resolve the definition/use relationships by indicating for
each use of a facility where its corresponding definition is
provided. This scheme has many benefits. It maps well to cur-
rent programming languages, since the kinds of facilities that
are used or defined can be chosen to be precisely those of an
underlying programming language. (Typically these facilities
support procedure call and data sharing.) It is good for the
compiler, since name resolution is an integral part of produc-
ing an executable system. It supports both automated checks
(e.g., type checking) and formal reasoning (e.g., in terms of
pre- and post-conditions). And, it is in widespread use.

However, the problem with this traditional approach is
that, while it is good for describing implementation relation-
ships between parts of a system, it not well-suited to describ-
ing the interaction relationships that occur in architectural
abstractions.

The distinction between a description of a system based on
“implements” relationships and one based on “interacts” rela-
tionships is important for three reasons. First, the two kinds of
relationship have different requirements for abstraction. In the
case of implementation relationships it is usually sufficient to
adopt the primitives of an underlying programming language
– e.g., procedure call and data sharing.

In contrast, as noted earlier, interaction relationships at an
architectural level of design often involve abstractions not di-
rectly provided by programming languages: pipes, event
broadcast, client-server protocols, etc. Whereas the implemen-
tation relationship is concerned with how a component
achieves its computation, the interaction relationship is used
to understand how that computation is combined with others
in the overall system. Hence, the abstractions associated with
interactions reflect diverse and potentially complex patterns of
communication. Second, they involve different ways of rea-
soning about the system. In the case of implementation rela-
tionships, reasoning typically proceeds hierarchically: the cor-
rectness of one module depends on the correctness of the
modules that it uses. In the case of interaction relationships,
the components (or modules) are logically independent of
each other: the correctness of each module is independent of
the correctness of other modules with which it interacts. Of
course, the aggregate system behavior depends on the behav-
ior of its constituent modules and the way that they interact.
Third, they involve different requirements for compatibility
checking. In the case of implementation relationships, type

checking is used to determine if a use of a facility matches its
definition. In the case of interaction relationships, we are more
interested in whether protocols of communication are respect-
ed. For example, does the reader of a pipe try to read beyond
the end-of-input marker; or is the server initialized before a
client makes a request of it.

3 FORMALISMS
3.1 What is Formalism?

Formalism is mathematics. Mathematicising a system with
deterministic set of input and objectives. Formalism of a sys-
tem is a progressive predictive model. Transcripting a system
into complex syntactic notations is formalism. Formula, For-
mal Specification, Formal Model are phase wise development
of transcripted system. A formal language can be used to de-
sign a formal model of a system. Formula describes a mathe-
matical transcription of an operation. Formal specification de-
scribes a homogenous and related set of operations which can
be later described as a module of a system. A formal model is
a module conglomerate, which describes the entire system.

3.2 Importance of Formal Representation
Accurate and complete requirements specifications are crucial
for the design and implementation of high-quality software.
Unfortunately, the articulation and verification of software
system requirements remains one of the most difficult and
error-prone tasks in the software development lifecycle. The
use of formal methods, based on mathematical logic and dis-
crete mathematics, holds promise for improving the reliability
of requirements articulation and modeling. However, formal
modeling and reasoning about requirements has not typically
been a part of the software analyst’s education and training,
and because the learning curve for the use of these methods is
nontrivial, adoption of formal methods has proceeded slowly.

3.2 Formal Specifications
Formal specifications use mathematical notation to describe in
a precise way the properties which an information system
must have, without unduly constraining the way in which
these properties are achieved. They describe what the system
must do without saying how it is to be done. This abstraction
makes formal specifications useful in the process of develop-
ing a computer system, because they allow questions about
what the system does to be answered confidently, without the
need to disentangle the information from a mass of detailed
program code, or to speculate about the meaning of phrases in
an imprecisely-worded prose description.

4 SURVEY
4.1 Conceptual Limits
The survey is just not limited to the goals and objectives of this
paper. Right from the evolutionary deduction of patterns from
the nature to the deterministic idealogical composition of pat-
terns fitting to a rationale, the survey should be carried out for
all sorts of pattern and pattern families.

The r a i s o n d ’ ê t r e of formal methods is to support rea-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 11, November-2015 36
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

soning: reasoning about hardware and software, reasoning
about their properties and about their construction [4]. Of par-
ticular importance is the ability to reason, mathematically,
about properties that are required for all values from unman-
ageably large data sets.

4.2 Formal Specifications
The concept of Formalization in Software has put forth practi-
cally by Charles Rich and Richard C. Waters, in their work
“Formalizing Reusable Software Components”, in the Artifi-
cial Intelligence Laboratory of Massachusetts Institute of
Technology, July 1983. The intention of formalizing software
begins with denoting the reusable libraries. Libraries are built
in a platform for developing software, unlike if the need of
functionally specified modules increase and their existence in
the standard libraries diminish the collection of such modules
starts and where are these preserved is the question of the
time. Collecting and preserving such components for reuse.

In the context of formal methods, there are two important
and yet memorable contributions that has eliminated myths
on formal methods, viz., Seven Myths of Formal Methods [5]
and Seven More Myths of Formal Methods [6]. Many industri-
al and research myths about formal have been dispelled by the
authors that prevail in modeling and design based on their
observations. The first seven myths of [5] challenge on the
critical software system design and some traditional myths
regarding the cost of development. But when these are
merged with the problems of optimization the software analy-
sis, design and development takes more swift steps, yet unac-
ceptable present software engineers. The later seven myths
stand iconoclast challenging the indispensability of formal
methods in software development.

Thus formal methods contribute the basic platform or lan-
guage for representing the software when it is not yet pro-
duced. In many applications, analysis and design lack trans-
parency, which can be overcome with formal representation,
with an outfit of excellent reliability analysis. Basically, a soft-
ware designer believes strong in the non-functional specifica-
tions of the project, when formal methods are in light, it would
be very easy to assess the characteristics of the software in the
pre-development stage mathematically.

As quoted in [7],[8],[9] there are methods available for
modeling web navigations, knowledge based analysis, feature
models.

4.3 Tool Support
Software Tools are indigenous efforts for analysis and design.
Rational RoseTM, is provides a wide elliptical palette of op-
tions and operations that enable a learner designer to design
even a large scale software solution. With its ancillary applica-
tions, has obtained a wide publicity of using it right from edu-
cation, development and research. The unified process of
software development gives an in the tool that can mathemati-
cally convince the end user about his problem. Other tools
exists for specific support of formal method specifications in
the software analysis and design, such as D-Finder 2, Infer,
OpenJML, opal, provide a varied applications for incremental
design, testing and model checking [10],[11],[12].

5 CONCLUSION
In this paper we have found that formal mechanism is a very
essential and vital process of understanding the quintessence
of the software product development problem. The software
architecture as seen in the previous decade is not at the appre-
hensible levels of a software team, it has so many desiderate
and conglomerate patterns that should be digested during
analysis and design of software product. The formal methods
not only provide the mathematical path for analysis design
but also for modeling, verification and checking, testing.

REFERENCES

[1] Robert Allen, David Garlan, “Formal Connectors”, March, 1994,
CMU-CS-94-115, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA 15213.

[2] J. M. Spivey, “The Z Notation: A Reference Manual”, Second Edition,
Programming Research Group, University of Oxford. ©1992.

[3] Heinrich Hußmann, “Formal Foundations for Software Engineering
Methods”, ISBN 3-540-63613-7 © Springer-Verlag Heidelberg, 1997.

[4] John Cooke, “Constructing Correct Software”, ISBN 1-85233-820-2, ©
Springer-Verlag London Limited 2005.

[5] Anthony Hall, Praxis Systems, “Seven Myths of Formal Methods”,
IEEE Computer Society, © 1990.

[6] Jonathen P. Bowen and Michael J. Hinchey, “Seven More Myths of
Formal Methods”, IEEE Computer Society © 1994.

[7] Jessica Chen, Xiaoshan Zhao, “Formal Models for Web Navigations
with Session Control and Browser Cache”, In Proceedings 6th
International Conference on Formal Engineering Methods, ICFEM
2004, Seattle, WA, USA, November 8-12, 2004.

[8] Kai Baukus, Ron van der Meyden, “A Knowledge Based Analysis of
Cache Coherence”, In Proceedings 6th International Conference on
Formal Engineering Methods, ICFEM 2004, Seattle, WA, USA,
November 8-12, 2004.

[9] Wei Zhang, Haiyan Zhao, Hong Mei, “A Propositional Logic-Based
Method for Verification of Feature Models”, In Proceedings 6th
International Conference on Formal Engineering Methods, ICFEM
2004, Seattle, WA, USA, November 8-12, 2004.

[10] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung
Nguyen, Joseph Sifakis, Rongjie Yan, “D-Finder 2: Towards Efficient
Correctness of Incremental Design”, In the Proceedings NASA
Formal Methods, Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011.

[11] Cristiano Calcagno, Dino Distefano, “Infer: An Automatic Program
Verifier for Memory Safety of C Programs”, In the Proceedings
NASA Formal Methods, Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011.

[12] Andreas Engelbredt Dalsgaard, Ren´e Rydhof Hansen, Kenneth Yrke
Jørgensen, Kim Gulstrand Larsen, Mads Chr. Olesen, Petur Olsen,
Jiˇri´ Srba, “opaal: A Lattice Model Checker”, In the Proceedings
NASA Formal Methods, Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011.

[13] Richard P. Gabriel, “Patterns of Software: Tales from the Software
Community”, OXFORD UNIVERSITY PRESS, (C) 1996, ISBN 0-19-
5100269-X..

IJSER

http://www.ijser.org/

	1 Introduction
	2 Patterns
	2.1 The Fundamental Role of Patterns
	2.2 Pattern Languages
	2.3 Architecture Complexity
	2.4 Architecture Style
	2.5 Problems with Existing Architectures
	2.6 The Need for a Theory of Architectural Connection

	3 Formalisms
	3.1 What is Formalism?
	3.2 Importance of Formal Representation
	3.2 Formal Specifications

	4 Survey
	4.1 Conceptual Limits
	4.2 Formal Specifications
	4.3 Tool Support

	5 Conclusion
	References
	[1] Robert Allen, David Garlan, “Formal Connectors”, March, 1994, CMU-CS-94-115, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213.
	[2] J. M. Spivey, “The Z Notation: A Reference Manual”, Second Edition, Programming Research Group, University of Oxford. ©1992.
	[3] Heinrich Hußmann, “Formal Foundations for Software Engineering Methods”, ISBN 3-540-63613-7 © Springer-Verlag Heidelberg, 1997.
	[4] John Cooke, “Constructing Correct Software”, ISBN 1-85233-820-2, © Springer-Verlag London Limited 2005.
	[5] Anthony Hall, Praxis Systems, “Seven Myths of Formal Methods”, IEEE Computer Society, © 1990.
	[6] Jonathen P. Bowen and Michael J. Hinchey, “Seven More Myths of Formal Methods”, IEEE Computer Society © 1994.
	[7] Jessica Chen, Xiaoshan Zhao, “Formal Models for Web Navigations with Session Control and Browser Cache”, In Proceedings 6th International Conference on Formal Engineering Methods, ICFEM 2004, Seattle, WA, USA, November 8-12, 2004.
	[8] Kai Baukus, Ron van der Meyden, “A Knowledge Based Analysis of Cache Coherence”, In Proceedings 6th International Conference on Formal Engineering Methods, ICFEM 2004, Seattle, WA, USA, November 8-12, 2004.
	[9] Wei Zhang, Haiyan Zhao, Hong Mei, “A Propositional Logic-Based Method for Verification of Feature Models”, In Proceedings 6th International Conference on Formal Engineering Methods, ICFEM 2004, Seattle, WA, USA, November 8-12, 2004.
	[10] Saddek Bensalem, Andreas Griesmayer, Axel Legay, Thanh-Hung Nguyen, Joseph Sifakis, Rongjie Yan, “D-Finder 2: Towards Efficient Correctness of Incremental Design”, In the Proceedings NASA Formal Methods, Third International Symposium, NFM 2011, P...
	[11] Cristiano Calcagno, Dino Distefano, “Infer: An Automatic Program Verifier for Memory Safety of C Programs”, In the Proceedings NASA Formal Methods, Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011.
	[12] Andreas Engelbredt Dalsgaard, Ren´e Rydhof Hansen, Kenneth Yrke Jørgensen, Kim Gulstrand Larsen, Mads Chr. Olesen, Petur Olsen, Jiˇri´ Srba, “opaal: A Lattice Model Checker”, In the Proceedings NASA Formal Methods, Third International Symposium, ...
	[13] Richard P. Gabriel, “Patterns of Software: Tales from the Software Community”, OXFORD UNIVERSITY PRESS, (C) 1996, ISBN 0-19-5100269-X..

