A Super Edge Anti-Magic Total Labeling of the Cycle C_{n} with P_{3} Chords

L.Girija ${ }^{\text {a }}$, A.Elumalair ${ }^{\text {b }}$
${ }^{\text {a }}$ Research Scholar, Department of Mathematics, Bharathiar University, Coimbatore-641046
A.Elumalai ${ }^{\text {b }}$
Department of Mathematics,
Valliammai Engineering College, Chennai-603203

Abstract

In this paper, we have proved super edge anti-magic total labeling of cycles with P_{3} chords. Index Terms-. Graph, Graph Labeling, edge anti-magic vertex labeling, super edge anti -magic vertex labeling, edge anti-magic total labeling, super edge anti magic total labeling, cycle with P_{3} chords.

1 Introduction

1.1OVERVIEW:

All graphs are finite, simple and undirected. The graph G has vertex-set $V(\mathrm{G})$ and edge-set $\mathrm{E}(\mathrm{G})$. Unless otherwise noted, $V(G)=v$ and $E(G)=e$.

A labeling of a graph is any map that carries some set of graph elements to numbers (usually to the positive or nonnegative integers). Magic labelings are one-to-one maps onto the appropriate set of consecutive integers starting from 1, with some kind of "constant-sum" property.

Simanjuntak, Miller and Bertault [7] defined an (a, d)-edge-antimagic vertex ((a, d)-EAV) labeling for a graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$ as an injective mapping f from V onto the set $\{1,2, \ldots, n\}$ with the property that the edge-weights $\{\mathrm{w}(\mathrm{xy}): \mathrm{w}(\mathrm{xy})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$, $x y \in E\}$, form an arithmetic sequence with the first term a and difference d, where $\mathrm{a}>0$ and $\mathrm{d} \geq 0$ are two fixed integers. An
 d)-SEAT) labeling if $f(V)=\{1,2, \ldots, n\}$.

Acharya and Hegde [1] (see also [5]) introduced the concept of a strongly (a, d)-indexable labeling which is equivalent to (a, d)-EAV labeling. The relationship between the sequential graphs and the graphs having an (a, d)-EAV labeling is shown in [3].

An (a, d)-edge antimagic total ((a, d)-EAT) labeling is a bijection f from $V \cup E$ onto $\{1,2, \ldots, v+e\}$ with the property that the sums of the label on the edges and the labels of their end points form an arithmetic sequence starting from a and having a common difference d. This labeling is a natural extension of the notion of edge magic labeling which was originally introduced by Kotzig and Rosa in [6], where edge-magic labeling is called magic valuation. Relationships between (a, d)-EAT labeling and other labelings, namely, (a, d)-EAV labeling are presented in [2]. An (a, d)-EAT labeling is called super (a, d)-edge antimagic total (($\mathrm{a}, \mathrm{d})$-SEAT) labeling if
$f(V)=\{1,2, \ldots, n\}$. This labeling is a natural extension of the
notion of a super edge-magic labeling defined by Enomoto et al. in [4]. A graph that has an (a, d)-EAV ((a, d)-EAT or (a, d)SEAT) labeling is called an (a, d)-EAV $((a, d)$-EAT or (a, d) SEAT) graph.

A cycle with P_{3} chords is a graph obtained from a cycle $C_{n}(n \geq 5, n \neq 6)$ by adding path P_{3} joining two nonconsecutive vertices of the cycle.

In this section we proved the super edge anti-magic labeling of the cycle C_{n} with P_{3} chords.

Theorem: 1

A cycle C_{n} with $1 P_{3}$ chord has a super edge anti-magic total labeling.
Proof:
Let C_{n} be a cycle on n vertices. We denote the vertices of C_{n} as $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots, \mathrm{~V}_{\mathrm{n}}$ in the clockwise direction and denote the edges of C_{n} with P_{3} chords as $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{\mathrm{n}+2}$ such that $\mathrm{e}_{\mathrm{i}}=$ $\mathrm{V}_{\mathrm{iV}}^{\mathrm{i}+1}$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{e}_{\mathrm{n}}=\mathrm{V}_{\mathrm{n} V} \mathrm{~V}_{1}$.
Case: $1 C_{n}, n \geq 5$ (n is odd)
A vertex which divide the chord is named as $\mathrm{V}_{\mathrm{n}+1}$ and the edges of the chord are named as $e_{n+1}=V_{n+1} V_{n}$ and $e_{n+2}=V_{2} V_{n+1}$ The labeling for the vertices of C_{n} with P_{3} chord is given as follows. Define

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{vi}_{\mathrm{i}}\right)=(\mathrm{i}+1) / 2, & 1 \leq \mathrm{i} \leq \mathrm{n}, \quad \text { i odd } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{n}+1+\mathrm{i}) / 2, & 2 \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{i} \text { even } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)=\mathrm{n}+1, &
\end{array}
$$

From the above definition it is observed that the vertices of C_{n} are labeled from 1 to n and are distinct.
Now the edge-weights can be labelled as
$f\left(e_{i}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right)+((n+1) / 2) \quad$ for $1 \leq i \leq n-1$,
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{V}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{1}\right)+((\mathrm{n}+1) / 2)$
$f\left(e_{n+1}\right)=f\left(v_{n+1}\right)+f\left(v_{n}\right)+((n+1) / 2)$ and
$f\left(e_{n+2}\right)=f\left(v_{2}\right)+f\left(v_{n+1}\right)+((n+1) / 2)$
Hence the cycle C_{n} with P_{3} chord has a ((3n+7/2),2)-super edge
anti-magic total labelling.
Case:2 $C_{n=4 m}$ for $m \geq 2$ (n is even)
A vertex which divide the chord is named as $\mathrm{V}_{\mathrm{n}+1}$ and the edges of the chord are named as $e_{n+1}=V_{n+1} V_{1}$ and $e_{n+2}=V_{n}$ -
${ }_{2} \mathrm{~V}+1$.
The labeling for the vertices of C_{n} with P_{3} chord is given as follows. Define

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{i}+1) / 2, & 1 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}, \mathrm{i} \text { odd } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{n}+\mathrm{i}+1) / 2, & \frac{\mathrm{n}+2}{2} \leq \mathrm{i} \leq \mathrm{n}-3, \text { i odd } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{i} / 2)+1, & \mathrm{n} / 2 \leq \mathrm{i} \leq \mathrm{n}, \mathrm{i} \text { even } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{n}+\mathrm{i}+2) / 2, & 2 \leq \mathrm{i} \leq \frac{\mathrm{n}-4}{2}, \mathrm{i} \text { even } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)=\mathrm{n}+1, & \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)=\mathrm{n}, &
\end{array}
$$

From the above definition it is observed that the vertices of C_{n} are labeled from 1 to n and are distinct.
Now the edge-weights can be labelled as,
$f\left(e_{i}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right)+((n+2) / 2) \quad$ for $1 \leq i \leq n-1$,
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{1}\right)+((\mathrm{n}+2) / 2)$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}+1}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)+\mathrm{f}\left(\mathrm{v}_{1}\right)+((\mathrm{n}+2) / 2)$ and
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}+2}\right)=\mathrm{f}\left(\mathrm{V}_{\mathrm{n}-2}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)+((\mathrm{n}+2) / 2)$
Hence the cycle C_{n} with P_{3} chord has a (($\left.3 n+6 / 2,2\right)$-super edge anti-magic total labellingedge anti-magic total labelling.
Case:3 $\mathrm{n}=4 \mathrm{~m}+2$ for $\mathrm{m} \geq 2$ (n is even)
A vertex which divide the chord is named as $\mathrm{V}_{\mathrm{n}+1}$ and the edges of the chord are named as $\mathrm{e}_{\mathrm{n}+1}=\mathrm{V}_{\mathrm{n}+1} \mathrm{~V}_{2}$ and $\mathrm{e}_{\mathrm{n}+2}=\mathrm{V}_{\mathrm{n}}$. $3 V_{n+1}$.
The labeling for the vertices of C_{n} with P_{3} chord is given as follows. Define

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{i}+1) / 2, & 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}, \quad \text { i odd } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{n}+\mathrm{i}+3) / 2, & \frac{\mathrm{n}+4}{2} \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{i} \text { odd } \\
\mathrm{f}\left(\mathrm{vi}_{\mathrm{i}}\right)=(\mathrm{n}+\mathrm{i}+4 / 2), & 2 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}, \mathrm{i} \text { even } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{i}+2) / 2, & \frac{\mathrm{n}+2}{2} \leq \mathrm{i} \leq \mathrm{n}-4, \mathrm{i} \text { even } \\
\mathrm{f}\left(\mathrm{vi}_{\mathrm{i}}\right)=(\mathrm{i}+4) / 2, & \mathrm{n}-2 \leq \mathrm{i} \leq \mathrm{n} \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}+1\right)=\mathrm{n} / 2, &
\end{array}
$$

From the above definition it is observed that the vertices of C_{n} are labeled from 1 to n and are distinct.
Now the edge-weights can be labelled as,

$$
\begin{aligned}
& f\left(e_{i}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right)+(n / 2) \quad \text { for } 1 \leq i \leq n-1, \\
& f\left(e_{n}\right)=f\left(v_{n}\right)+f\left(v_{1}\right)+(n / 2) \\
& f\left(e_{n+1}\right)=f\left(v_{n+1}\right)+f\left(v_{2}\right)+(n / 2) \text { and } \\
& f\left(e_{n+2}\right)=f\left(v_{n-3}\right)+f\left(v_{n+1}\right)+(n / 2)
\end{aligned}
$$

Hence the cycle C_{n} with P_{3} chord has a ((3n+8), 2)-super edge anti-magic total labelling.

Theorem: 2

A cycle C_{n} with $2 P_{3}$ chords has a super edge anti-magic total labeling
Proof:
Let C_{n} be a cycle on n vertices. We denote the vertices of C_{n} as $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \ldots, \mathrm{~V}_{\mathrm{n}}$ in the clockwise direction and denote the edges of C_{n} with $2 P_{3}$ chords as $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{\mathrm{n}+4}$ such that $\mathrm{e}_{\mathrm{i}}=$ $V_{i V} V_{i+1}$ for $1 \leq i \leq n-1, e_{n}=V_{n V 1}$.
Case: $1 C_{n}, n \geq 5$ (n is odd)
The vertices which divide the chords are named as $\mathrm{V}_{\mathrm{n}+1}$ and $\mathrm{V}_{\mathrm{n}+2}$ and the edges of the chords are named as $\mathrm{e}_{\mathrm{n}+1}=\mathrm{V}_{\mathrm{n}+1} \mathrm{~V}_{2}, \mathrm{e}_{\mathrm{n}+2}=\mathrm{V}_{\mathrm{n}+2} \mathrm{~V}_{2}$ and $\mathrm{e}_{\mathrm{n}+3}=\mathrm{V}_{4} \mathrm{~V}_{\mathrm{n}}+2, \mathrm{e}_{\mathrm{n}+4}=\mathrm{V}_{\mathrm{n}} \mathrm{V}_{\mathrm{n}+1}$.
The labeling for the vertices of C_{n} with $2 \mathrm{P}_{3}$ chords are given as follows. Define,
$f\left(v_{i}\right)=(i+1) / 2, \quad 1 \leq i \leq n, i$ odd
$f\left(v_{i}\right)=(n+1+i) / 2, \quad 2 \leq i \leq n-1, i$ even
$\mathrm{f}\left(\mathrm{V}_{\mathrm{n}+1}\right)=\mathrm{n}+1$
$\mathrm{f}\left(\mathrm{V}_{\mathrm{n}+2}\right)=\mathrm{n}+2$
From the above definition it is observed that the vertices of C_{n} are labeled from 1 to n and are distinct.
Now the edge-weights can be labelled as,
$f\left(e_{i}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right)+((n+3) / 2)$ for $1 \leq i \leq n-1$,
$f\left(e_{n}\right)=f\left(v_{n}\right)+f\left(v_{1}\right)+((n+3) / 2)$
$f\left(\mathrm{e}_{\mathrm{n}+1}\right)=\mathrm{f}\left(\mathrm{V}_{\mathrm{n}+1}\right)+\mathrm{f}\left(\mathrm{v}_{2}\right)+((\mathrm{n}+3) / 2)$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}+2}\right)=\mathrm{f}\left(\mathrm{V}_{\mathrm{n}+2}\right)+\mathrm{f}\left(\mathrm{v}_{2}\right)+((\mathrm{n}+3) / 2)$
$f\left(e_{n+3}\right)=f\left(v_{4}\right)+f\left(v_{n+2}\right)+((n+3) / 2)$ and
$f\left(e_{n+4}\right)=f\left(v_{n}\right)+f\left(v_{n+1}\right)+((n+3) / 2)$.
Hence the cycle C_{n} with $2 \mathrm{P}_{3}$ chord has a (($3 n+9 / 2$),2)-super edge anti-magic total labelling.
Case:2 $C_{n=4 m}$ for $m \geq 2$ (n is even)
The vertices which divide the chords are named as $\mathrm{V}_{\mathrm{n}+1}$ and $\mathrm{V}_{\mathrm{n}+2}$ and the edges of the chords are named as $\mathrm{e}_{\mathrm{n}+1}=\mathrm{V}_{\mathrm{n}+1} \mathrm{~V}_{1}, \mathrm{e}_{\mathrm{n}+2}=\mathrm{V}_{\mathrm{n}+2} \mathrm{~V}_{1}$ and $\mathrm{e}_{\mathrm{n}+3}=\mathrm{V}_{\mathrm{n}-2} \mathrm{~V}_{\mathrm{n}+2}, \mathrm{e}_{\mathrm{n}+4}=\mathrm{V}_{\mathrm{n}}-1 \mathrm{~V}_{\mathrm{n}+1}$.
The labeling for the vertices of C_{n} with $2 \mathrm{P}_{3}$ chords are given as follows. Define
$f\left(v_{i}\right)=(i+1) / 2, \quad 1 \leq i \leq \frac{n-2}{2}, i$ odd
$f\left(v_{i}\right)=(n+i+5) / 2$,
$f\left(\mathrm{~V}_{\mathrm{i}}\right)=(\mathrm{i}+2 / 2)$, $\frac{n+2}{2} \leq i \leq n-1, i$ odd
$f\left(v_{i}\right)=(n+i+6) / 2$,
$n / 2 \leq i \leq n$, i even
$2 \leq i \leq \frac{n-4}{2}$, i even
$\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)=(\mathrm{n}+4) / 2$
$\mathrm{f}\left(\mathrm{V}_{\mathrm{n}}+2\right)=(\mathrm{n}+6) / 2$
From the above definition it is observed that the vertices of C_{n} are labeled from 1 to n and are distinct.
Now the edge-weights can be labelled as,
$\mathrm{f}\left(\mathrm{e}_{\mathrm{i}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{i}+1}\right)+((\mathrm{n}+4) / 2) \quad$ for $1 \leq \mathrm{i} \leq \mathrm{n}-1$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)+\mathrm{f}\left(\mathrm{v}_{1}\right)+((\mathrm{n}+4) / 2)$
$f\left(e_{n+1}\right)=f\left(v_{n+1}\right)+f\left(v_{1}\right)+((n+4) / 2)$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}+2}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+2}\right)+\mathrm{f}\left(\mathrm{v}_{1}\right)+((\mathrm{n}+4) / 2)$
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}+3}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-2}\right)+\mathrm{f}\left(\mathrm{V}_{\mathrm{n}+2}\right)+((\mathrm{n}+4) / 2)$ and
$\mathrm{f}\left(\mathrm{e}_{\mathrm{n}+4}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}-1}\right)+\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)+((\mathrm{n}+4) / 2)$.
Hence the cycle C_{n} with $2 \mathrm{P}_{3}$ chord has a ((3n+8/2,2)-super edge anti-magic total labelling.

Case:3 $C_{n=4 m+2}$ for $m \geq 2$ (n is even)

The vertices which divide the chords are named as $\mathrm{V}_{\mathrm{n}+1}$ and $\mathrm{V}_{\mathrm{n}+2}$ and the edges of the chords are named as $\mathrm{e}_{\mathrm{n}+1}=\mathrm{V}_{\mathrm{n}+1} \mathrm{~V}_{\mathrm{n}-3}, \mathrm{e}_{\mathrm{n}+2}=\mathrm{V}_{\mathrm{n}+2} \mathrm{~V}_{\mathrm{n}-3}$ and $\mathrm{e}_{\mathrm{n}+3}=\mathrm{V}_{3} \mathrm{~V}_{\mathrm{n}+2}, \mathrm{e}_{\mathrm{n}+4}=\mathrm{V}_{2} \mathrm{~V}_{\mathrm{n}+1}$.
The labeling for the vertices of C_{n} with $2 \mathrm{P}_{3}$ chords are given as follows. Define

$$
\begin{array}{ll}
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{i}+1) / 2, & 1 \leq \mathrm{i} \leq \frac{\mathrm{n}}{2}, \mathrm{i} \text { odd } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{n}+\mathrm{i}+5) / 2, & \frac{\mathrm{n}+4}{2} \leq \mathrm{i} \leq \mathrm{n}-1, \mathrm{i} \text { odd } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{n}+\mathrm{i}+6) / 2, & 2 \leq \mathrm{i} \leq \frac{\mathrm{n}-2}{2}, \mathrm{i} \text { even } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{i}+2 / 2), & \frac{\mathrm{n}+2}{2} \leq \mathrm{i} \leq \mathrm{n}-4, i \text { even } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{i}+6) / 2, & \mathrm{n}-2 \leq \mathrm{i} \leq n, \quad \mathrm{i} \text { even } \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}+1}\right)=\mathrm{n} / 2 \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}+2\right)=(\mathrm{n}+2) / 2 &
\end{array}
$$

From the above definition it is observed that the vertices of C_{n} are labeled from 1 to n and are distinct.
Now the edge-weights can be labelled as,
$f\left(e_{i}\right)=f\left(v_{i}\right)+f\left(v_{i+1}\right)+((n+2) / 2)$ for $1 \leq i \leq n-1$,
$f\left(e_{n}\right)=f\left(v_{n}\right)+f\left(v_{1}\right)+((n+2) / 2)$
$f\left(e_{n+1}\right)=f\left(v_{n+1}\right)+f\left(v_{n-3}\right)+((n+2) / 2)$
$f\left(e_{n+2}\right)=f\left(v_{n+2}\right)+f\left(v_{n-3}\right)+((n+2) / 2)$
$f\left(e_{n+3}\right)=f\left(v_{3}\right)-+f\left(v_{n+2}\right)+((n+2) / 2)$, and
$f\left(e_{n+4}\right)=f\left(v_{2}\right)+f\left(v_{n+1}\right)+((n+2) / 2)$.
Hence the cycle C_{n} with $2 \mathrm{P}_{3}$ chord has a ((3n+10),2)-super edge anti-magic total labelling.

References

[1] B.D. Acharya and S.M. Hegde, Strongly indexable graphs, Discrete Math. 93 (1991), 275-299.
[2] M. Bacca, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Utilitas Math. 60 (2001), 229-239.
[3] M. Bǎca andM.Z. Youssef, Further results on antimagic graph labelings, Austral.J. Combin. 38 (2007), 163-172. 272 RAHMAWATI, SUGENG, SILABAN, MILLER AND BA ${ }^{\sim}$ CA
[4] H. Enomoto, A.S. Llad'o, T. Nakamigawa and G. Ringel, Super edgemagic graphs, SUT J. Math. 34 (1998), 105-109.
[5] S.M. Hegde, On indexable graphs, J. Combinatorics, Information and System Sciences 17 (1992), 316-331.
[6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
[7] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, Proceedings of the Eleventh Australasian Workshop on Combinatorial Algorithms (2000), 179-189.
[8] J. A. MacDougall and W.D. Wallis ,Strong edge-magic labelling of a cycle with a chord, Australasian journal of combinatorics Volume 28 (2003), Pages 245-255,
[9] Gallian. J. A. (2011), 'A Dynamic survey of graph labeling', Electronic J. Combinatirics

