A Super Edge Anti-Magic Total Labeling of the Cycle C_n with P_3 Chords

L.Girija^a, A.Elumalair^b

^a Research Scholar, Department of Mathematics, Bharathiar University, Coimbatore-641046

Department of Mathematics, Valliammai Engineering College, Chennai-603203

Abstract – In this paper, we have proved super edge anti-magic total labeling of cycles with P_3 chords. Index Terms—. Graph, Graph Labeling, edge anti-magic vertex labeling, super edge anti –magic vertex labeling, edge anti-magic total labeling, super edge anti – magic total labeling, cycle with P_3 chords.

----- 🔶 ------

1 INTRODUCTION

1.10VERVIEW:

All graphs are finite, simple and undirected. The *graph G* has vertex-set V (G) and edge-set E(G). Unless otherwise noted, V (G) = v and E(G) = e.

A *labeling* of a graph is any map that carries some set of graph elements to numbers (usually to the positive or nonnegative integers). Magic labelings are one-to-one maps onto the appropriate set of consecutive integers starting from 1, with some kind of "constant-sum" property.

Simanjuntak, Miller and Bertault [7] defined *an* (*a*, *d*)*edge-antimagic vertex* ((a, d)-EAV) labeling for a graph G(V,E) as an injective mapping *f* from *V* onto the set {1, 2, . . . , n} with the property that the edge-weights {w(xy) : w(xy) = f(x) + f(y), xy \in E}, form an arithmetic sequence with the first term *a* and difference *d*, where a > 0 and d ≥ 0 are two fixed integers. An (a, d)-EAT labeling is called *super* (*a*, *d*)-*edge antimagic total* ((a, d)-SEAT) labeling if f(V) = {1, 2, . . . , n}.

Acharya and Hegde [1] (see also [5]) introduced the concept of a strongly (a, d)-indexable labeling which is equivalent to (a, d)-EAV labeling. The relationship between the sequential graphs and the graphs having an (a, d)-EAV labeling is shown in [3].

An (*a*, *d*)-edge antimagic total ((a, d)-EAT) labeling is a bijection f from V \cup E onto {1, 2, . . . , v + e} with the property that the sums of the label on the edges and the labels of their end points form an arithmetic sequence starting from *a* and having a common difference *d*. This labeling is a natural extension of the notion of edge magic labeling which was originally introduced by Kotzig and Rosa in [6], where edge-magic labeling is called magic valuation. Relationships between (a, d)-EAT labeling and other labelings, namely, (a, d)-EAV labeling are presented in [2]. An (a, d)-EAT labeling is called *super* (*a*, *d*)-edge antimagic total ((a, d)-SEAT) labeling if notion of a super edge-magic labeling defined by Enomoto et al. in [4]. A graph that has an (a, d)-EAV ((a, d)-EAT or (a, d)-SEAT) labeling is called an (a, d)-EAV ((a, d)-EAT or (a, d)-SEAT) graph.

A cycle with P_3 chords is a graph obtained from a cycle C_n ($n \ge 5$, $n \ne 6$) by adding path P_3 joining two nonconsecutive vertices of the cycle.

In this section we proved the super edge anti-magic labeling of the cycle C_n with P_3 chords.

Theorem: 1

A cycle C_n with $1P_3$ chord has a super edge anti-magic total labeling.

Proof:

Let C_n be a cycle on n vertices. We denote the vertices of C_n as $v_1, v_2, v_3, ..., v_n$ in the clockwise direction and denote the edges of C_n with P_3 chords as $e_1, e_2, e_3, ..., e_{n+2}$ such that $e_i = v_i v_{i+1}$ for $1 \le i \le n-1$, $e_n = v_n v_1$.

Case:1 C_n , $n \ge 5$ (n is odd)

A vertex which divide the chord is named as v_{n+1} and the edges of the chord are named as $e_{n+1}=v_{n+1}v_n$ and $e_{n+2}=v_2v_{n+1}$ The labeling for the vertices of C_n with P_3 chord is given as follows. Define

$$\begin{array}{ll} f(v_i) = (i\!+\!1)/2, & 1\!\leq\!\!i\!\leq\!\!n, \ i \ odd \\ f(v_i) = (n\!+\!1\!+\!i)/2 \ , & 2\!\leq\!\!i\!\leq\!\!n\!-\!1, \ i \ even \end{array}$$

$$f(v_{n+1}) = n+1$$

From the above definition it is observed that the vertices of C_n are labeled from 1 to n and are distinct.

Now the edge-weights can be labelled as

$$\begin{array}{ll} f(e_{i}) = f(v_{i}) + f(v_{i+1}) + ((n+1)/2) & \text{for } 1 \leq i \leq n-1, \\ f(e_{n}) = f(v_{n}) + f(v_{1}) + ((n+1)/2) \\ f(e_{n+1}) = f(v_{n+1}) + f(v_{n}) + ((n+1)/2) & \text{and} \\ f(e_{n+2}) = f(v_{2}) + f(v_{n+1}) + ((n+1)/2) \end{array}$$

Hence the cycle C_n with P_3 chord has a ((3n+7/2),2)-super edge

 $f(V) = \{1, 2, ..., n\}$. This labeling is a natural extension of the

A.Elumalai

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN 2229-5518

anti-magic total labelling.

Case:2 $C_{n=4m}$ for $m \ge 2$ (n is even)

A vertex which divide the chord is named as v_{n+1} and the edges of the chord are named as $e_{n+1}=v_{n+1}v_1$ and $e_{n+2}=v_{n-2}v_{n+1}$.

The labeling for the vertices of C_n with P_3 chord is given as follows. Define

$$\begin{split} f(v_i) &= (i+1)/2, & 1 \le i \le \frac{n-2}{2}, i \text{ odd} \\ f(v_i) &= (n+i+1)/2, & \frac{n+2}{2} \le i \le n-3, i \text{ odd} \\ f(v_i) &= (i/2)+1, & n/2 \le i \le n, i \text{ even} \\ f(v_i) &= (n+i+2)/2, & 2 \le i \le \frac{n-4}{2}, i \text{ even} \\ f(v_{n-1}) &= n+1 \quad , \end{split}$$

 $f(v_{n+1})=n$, From the above definition it is observed that the vertices of C_n

are labeled from 1 to n and are distinct.

Now the edge-weights can be labelled as, $f(e_i) = f(v_i)+f(v_{i+1}) + ((n+2)/2)$ for $1 \le i \le n-1$, $f(e_n) = f(v_n) + f(v_1) + ((n+2)/2)$ $f(e_{n+1}) = f(v_{n+1}) + f(v_1) + ((n+2)/2)$ and $f(e_{n+2}) = f(v_{n-2}) + f(v_{n+1}) + ((n+2)/2)$

Hence the cycle C_n with P_3 chord has a ((3n+6/2,2)-super edge anti-magic total labellingedge anti-magic total labelling. **Case:3** $C_{n=4m+2}$ for m≥2 (n is even)

A vertex which divide the chord is named as v_{n+1} and the edges of the chord are named as $e_{n+1}=v_{n+1}v_2$ and $e_{n+2}=v_{n-3}v_{n+1}$.

The labeling for the vertices of C_n with $P_3 \mbox{ chord}$ is given as follows. Define

$$\begin{split} f(v_i) &= (i+1)/2, & 1 \leq i \leq \frac{n}{2}, i \text{ odd} \\ f(v_i) &= (n+i+3)/2, & \frac{n+4}{2} \leq i \leq n-1, i \text{ odd} \\ f(v_i) &= (n+i+4/2), & 2 \leq i \leq \frac{n-2}{2}, i \text{ even} \\ f(v_i) &= (i+2)/2, & \frac{n+2}{2} \leq i \leq n-4, i \text{ even} \\ f(v_i) &= (i+4)/2, & n-2 \leq i \leq n \\ f(v_{n+1}) &= n/2, & \end{split}$$

From the above definition it is observed that the vertices of C_n are labeled from 1 to n and are distinct.

Now the edge-weights can be labelled as,

 $\begin{array}{ll} f(e_i)=f(v_i)+f(v_{i+1})+(n/2) & \mbox{for } 1 \leq i \leq n-1, \\ f(e_n)=f(v_n)+f(v_1)+(n/2) & \mbox{} \\ f(e_{n+1})=f(v_{n+1})+f(v_2)+(n/2) & \mbox{and} & \\ f(e_{n+2})=f(v_{n-3})+f(v_{n+1})+(n/2) & \mbox{} \end{array}$

Hence the cycle C_n with P_3 chord has a ((3n+8), 2)-super edge anti-magic total labelling.

Theorem: 2

A cycle C_{n} with $2P_{3}$ chords has a super edge anti-magic total labeling

Proof:

Let C_n be a cycle on n vertices. We denote the vertices of C_n as $v_1, v_2, v_3, \ldots, v_n$ in the clockwise direction and denote the edges of C_n with 2P₃ chords as $e_1, e_2, e_3, \ldots, e_{n+4}$ such that $e_i = v_i v_{i+1}$ for $1 \leq i \leq n-1$, $e_n = v_n v_1$.

Case:1 C_n , $n \ge 5$ (n is odd)

The vertices which divide the chords are named as v_{n+1} and v_{n+2} and the edges of the chords are named as $e_{n+1}=v_{n+1}v_2$, $e_{n+2}=v_{n+2}v_2$ and $e_{n+3}=v_4v_{n+2}$, $e_{n+4}=v_nv_{n+1}$.

The labeling for the vertices of C_n with $2P_3$ chords are given as follows. Define,

$$\begin{array}{ll} f(v_i) = (i+1)/2, & 1 \leq i \leq n, \ i \ odd \\ f(v_i) = (n+1+i)/2, & 2 \leq i \leq n-1, \ i \ even \\ f(v_{n+1}) = n+1 \end{array}$$

 $f(v_{n+2}) = n+2$

From the above definition it is observed that the vertices of C_n are labeled from 1 to n and are distinct.

Now the edge-weights can be labelled as,

 $f(e_i) = f(v_i) + f(v_{i+1}) + ((n+3)/2)$ for $1 \le i \le n-1$,

 $f(e_n) = f(v_n) + f(v_1) + ((n+3)/2)$

 $f(e_{n+1}) = f(v_{n+1}) + f(v_2) + ((n+3)/2)$

 $f(e_{n+2})=f(v_{n+2})+f(v_2)+((n+3)/2)$

 $f(e_{n+3})=f(v_4)+f(v_{n+2})+((n+3)/2)$ and

 $f(e_{n+4}) = f(v_n) + f(v_{n+1}) + ((n+3)/2).$

Hence the cycle C_n with $2P_3$ chord has a ((3n+9/2),2)-super edge anti-magic total labelling.

Case:2 $C_{n=4m}$ for $m \ge 2$ (n is even)

The vertices which divide the chords are named as v_{n+1} and v_{n+2} and the edges of the chords are named as $e_{n+1}=v_{n+1}v_1$, $e_{n+2}=v_{n+2}v_1$ and $e_{n+3}=v_{n-2}v_{n+2}$, $e_{n+4}=v_{n-1}v_{n+1}$.

The labeling for the vertices of C_n with $2P_3 \mbox{ chords}$ are given as follows. Define

$f(v_i) = (i+1)/2,$	$1 \le i \le \frac{n-2}{2}$, i odd
$f(v_i) = (n+i+5)/2,$	$\frac{n+2}{2} \leq i \leq n-1$, i odd
$f(v_i) = (i+2/2)$,	n/2≤i≤n, i even
$f(v_i) = (n+i+6)/2$,	$2 \le i \le \frac{n-4}{2}$, i even
$f(v_{n+1}) = (n+4)/2$ $f(v_{n+2}) = (n+6)/2$	

From the above definition it is observed that the vertices of C_n are labeled from 1 to n and are distinct.

Now the edge-weights can be labelled as, $f(e_i)=f(v_i)+f(v_{i+1})+((n+4)/2)$ for $1 \le i \le n-1$

IJSER © 2015 http://www.ijser.org International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 ISSN 2229-5518

$$\begin{split} &f(e_n) = f(v_n) + f(v_1) + ((n+4)/2) \\ &f(e_{n+1}) = f(v_{n+1}) + f(v_1) + ((n+4)/2) \\ &f(e_{n+2}) = f(v_{n+2}) + f(v_1) + ((n+4)/2) \\ &f(e_{n+3}) = f(v_{n-2}) + f(v_{n+2}) + ((n+4)/2) \text{ and} \end{split}$$

 $f(e_{n+4})=f(v_{n-1})+f(v_{n+1})+((n+4)/2).$

Hence the cycle C_n with $2P_3$ chord has a ((3n+8/2,2)-super edge anti-magic total labelling.

Case:3 $C_{n=4m+2}$ for $m \ge 2$ (n is even)

The vertices which divide the chords are named as v_{n+1} and v_{n+2} and the edges of the chords are named as $e_{n+1}=v_{n+1}v_{n-3}$, $e_{n+2}=v_{n+2}v_{n-3}$ and $e_{n+3}=v_3v_{n+2}$, $e_{n+4}=v_2v_{n+1}$.

The labeling for the vertices of C_n with $2P_3$ chords are given as follows. Define

 $\begin{aligned} f(v_i) &= (i+1)/2, &, & 1 \le i \le \frac{n}{2}, i \text{ odd} \\ f(v_i) &= (n+i+5)/2, & & \frac{n+4}{2} \le i \le n-1, i \text{ odd} \\ f(v_i) &= (n+i+6)/2, & & 2 \le i \le \frac{n-2}{2}, i \text{ even} \\ f(v_i) &= (i+2/2), & & & \frac{n+2}{2} \le i \le n-4, i \text{ even} \\ f(v_i) &= (i+6)/2, & & & n-2 \le i \le n, i \text{ even} \end{aligned}$

 $f(v_{n+1}) = n/2$

n/2

 $f(v_{n+2}) = (n+2)/2$ From the above definition it is observed that the vertices of Cn are labeled from 1 to n and are distinct.

Now the edge-weights can be labelled as, $f(e_i) = f(v_i) + f(v_{i+1}) + ((n+2)/2)$ for $1 \le i \le n-1$, $f(e_n) = f(v_n) + f(v_1) + ((n+2)/2)$ $f(e_{n+1}) = f(v_{n+1}) + f(v_{n-3}) + ((n+2)/2)$ $f(e_{n+2}) = f(v_{n+2}) + f(v_{n-3}) + ((n+2)/2)$

 $f(e_{n+3}) = f(v_3) + f(v_{n+2}) + ((n+2)/2)$, and

 $f(e_{n+4}) = f(v_2) + f(v_{n+1}) + ((n+2)/2).$

Hence the cycle C_n with $2P_3$ chord has a ((3n+10),2)-super edge anti-magic total labelling.

References

- B.D. Acharya and S.M. Hegde, Strongly indexable graphs, Discrete Math. 93 (1991), 275–299.
- [2] M. Ba'ca, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, *Utilitas Math.* 60 (2001), 229–239.
- [3] M. Ba'ca and M.Z. Youssef, Further results on antimagic graph labelings, Austral.J. Combin. 38 (2007), 163–172. 272 RAHMAWATI, SUGENG, SILABAN, MILLER AND BA'CA
- [4] H. Enomoto, A.S. Llad'o, T. Nakamigawa and G. Ringel, Super edgemagic graphs, SUT J. Math. 34 (1998), 105–109.
- [5] S.M. Hegde, On indexable graphs, J. Combinatorics, Information and System Sciences 17 (1992), 316–331.
- [6] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull.13 (1970), 451–461.
- [7] R. Simanjuntak, M. Miller and F. Bertault, Two new (a, d)-antimagic graph labelings, *Proceedings of the Eleventh Australasian Workshop on Combinatorial Algorithms* (2000), 179–189.

- [8] J. A. MacDougall and W.D. Wallis ,Strong edge-magic labelling of a cycle with a chord, Australasian journal of combinatorics Volume 28 (2003), Pages 245–255,
- [9] Gallian. J. A. (2011), 'A Dynamic survey of graph labeling', Electronic J. Combinatirics