
International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 138
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A Review of Testing Techniques and
Principles in Software Quality Assurance

Testing
B. Vasundhara Devi

ABSTRACT: To judge any software product it should completely free from errors, faults, bugs, and vulnerabilities that
is, product should completely correct, complete, fit for use Nothing but it should satisfy all the internal, external
requirements and should comply with the given functionalities then only anyone can judge the quality of the software
product for these we have got plenty of tools which are entrepreneur and open source This paper describes Software
testing techniques and importance of in engineering the software product and also tells about Software testing goals
and principles. And also describes Software testing techniques and strategies. Finally it describes the difference
between software testing and debugging.

Keywords—Debugging, verification, validation, Software Testing Goals, Software Testing principles, Software Testing
Techniques, Software Testing strategies

—————————— ——————————

I. INTRODUCTION

Software testing is a process used to identify the
correctness, completeness, and quality of developed
computer software. It includes a set of activities
conducted with the intent of finding errors in
software so that it could be corrected before the
product is released to the end users. In simple words,
software testing is an activity to check whether the
actual results match the expected results and to
ensure that the software system is defect free.

1.1 Why Testing is Important?

• China Airlines Airbus A300 crashing due to a
software bug on April 26, 1994 killing 264 innocent
lives.

• Software bugs can potentially cause monetary and
human loss, history is full of such examples. In
1985, Canada’s Therac-25 radiation therapy
machine malfunctioned due to software bug and
delivered lethal radiation doses to patients, leaving
3 people dead and critically injuring 3 others.

• In April of 1999 ,a software bug caused the failure
of a $1.2 billion military satellite launch, the
costliest accident in history

• In may of 1996, a software bug caused the bank
accounts of 823 customers of a major U.S. bank to

be credited with 920 million US dollars As you see,
testing is important because software bugs could be
expensive or even dangerous.

• As Paul Elrich puts it - "To err is human, but to
really foul things up you need a computer."

II. SOFTWARE TESTING GOALS

You simply say that software testing is nothing but
validation and verification. Main goal of software
Testing is to ensure that software should always be
defect free and easily maintained. Software Testing
has different goals and objectives. The major
objectives of Software testing are as follows:

• Finding defects which may get created by the
programmer while developing the software.

• Gaining confidence in and providing information
about the level of quality.

• To prevent defects.
• To make sure that the end result meets the

business and user requirements.
• To ensure that it satisfies the BRS that is Business

Requirement Specification and SRS that is System
Requirement Specifications.

• To gain the confidence of the customers by
providing them a quality product.

IJSER

http://www.ijser.org/
http://istqbexamcertification.com/
http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 139
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Testing should systematically uncover different
classes of errors in a minimum amount of time and
with a minimum amount of effort. A secondary
benefit of testing is that it demonstrates that the
software appears to be working as stated in the
specifications. The data collected through testing can
also provide an indication of the software's reliability
and quality. But, testing cannot show the absence of
defect -- it can only show that software defects are
present.

III. SOFTWARE TESTING PRINCIPLES

There are seven principles of testing. They are as
follows:

1) Testing shows presence of defects: Testing can
show the defects are present, but cannot prove that
there are no defects. Even after testing the application
or product thoroughly we cannot say that the product
is 100% defect free. Testing always reduces the
number of undiscovered defects remaining in the
software but even if no defects are found, it is not a
proof of correctness.

2) Exhaustive testing is impossible: Testing
everything including all combinations of inputs and
preconditions is not possible. So, instead of doing the
exhaustive testing we can use risks and priorities to
focus testing efforts. For example: In an application in
one screen there are 15 input fields, each having 5
possible values, then to test all the valid combinations
you would need 30 517 578 125 (515) tests. This is
very unlikely that the project timescales would allow
for this number of tests. So, accessing and managing
risk is one of the most important activities and reason
for testing in any project.

3) Early testing: In the software development life
cycle testing activities should start as early as possible
and should be focused on defined objectives.

4) Defect clustering: A small number of modules
contains most of the defects discovered during pre-
release testing or shows the most operational failures.

5) Pesticide paradox: If the same kinds of tests are
repeated again and again, eventually the same set of
test cases will no longer be able to find any new bugs.
To overcome this “Pesticide Paradox”, it is really very
important to review the test cases regularly and new
and different tests need to be written to exercise

different parts of the software or system to potentially
find more defects.

6) Testing is context depending: Testing is basically
context dependent. Different kinds of sites are tested
differently. For example, safety – critical software is
tested differently from an e-commerce site.

7) Absence – of – errors fallacy: If the system built is
unusable and does not fulfill the user’s needs and
expectations then finding and fixing defects does not
help.

 IV. SOFTWARE TESTING TECHNIQUES

In this Section the focus is mainly on the different
software testing Techniques. Software Testing
Techniques can be divided into two types:-

4.1. MANUAL TESTING (Stress Testing)

It is a slow process and laborious where testing is
done statically .It is done in early phase of life cycle. It
is also called static testing. It is done by analyst,
developer and testing team. Different Manual testing
Techniques are as follows:- A) walk through B)
Informal Review C) Technical Review D) Inspection

4.2. AUTOMATED TESTING (Dynamic
Testing)

In this tester runs the script on the testing tool and
testing is done. Automated testing is also called
dynamic testing. Automated testing is further
classified into four types

1. Correctness testing
2. Performance testing
3. Reliability testing
4. Security testing

IJSER

http://www.ijser.org/
http://istqbexamcertification.com/what-is-a-software-testing/
http://istqbexamcertification.com/what-is-defect-or-bugs-or-faults-in-software-testing/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/
http://istqbexamcertification.com/what-are-the-software-development-life-cycle-phases/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 140
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Fig 1:-Further classification of Automated
software Testing.

4.2.1. CORRECTNESS TESTING

Correctness is the minimum requirement of software.
Correctness testing will need some type of oracle, to
tell the right behavior from the wrong one. The tester
may or may not know the inside details of the
software module under test. [3] Therefore either
white box testing or black box testing can be used.
Correctness testing has following three forms:-

A. White box testing
B. Black box testing
C. Grey box testing

Fig 2:- Different form of Correctness testing
[3].

A. WHITE BOX TESTING

White box testing is highly effective in detecting and
resolving problems, because bugs can often be found
before they cause trouble.[5] White box testing is the
process of giving the input to the system and
checking how the system processes that input to
generate the required output. White box testing is
also called white box analysis, clear box testing or
clear box analysis.[5] White box testing is applicable
at integration, unit and system levels of the software
testing process.[3] White box testing is considered as a
security testing method that can be used to validate
whether code implementation follows intended
design, to validate implemented security
functionality, and to uncover exploitable
vulnerabilities. Some Different types of white box
testing techniques are as follows:-

1) Basis Path Testing
2) Loop Testing
3) Control Structure Testing

Advantages of white box testing:-

1) All independent paths in a module will be
exercised at least once.

2) All logical decisions will be exercised.
3) All loops at their boundaries will be executed.
4) Internal data structures will be exercised to

maintain their validity.
5) Errors in hidden codes are revealed.
6) Approximate the partitioning done by execution

equivalence.
7) Developer carefully gives reason about

implementation.

Disadvantages of white box testing:-

1) Missed out the cases omitted in the code.
2) As knowledge of code and internal structure is a

prerequisite, a skilled tester is needed to carry out
this type of testing, which increases the cost.

3) And it is nearly impossible to look into every bit of
code to find out hidden errors, which may create
problems, resulting in failure of the application.

B. BLACK BOX TESTING

Black box testing is testing software based on output
requirements and without any knowledge of the
internal structure or coding in the program.[5]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 141
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Basically Black box testing is an integral part of
„Correctness testing‟ but its ideas are not limited to
correctness testing only. The goal is to test how well
the component conforms to the published
requirement for the component. Black box testing
have little or no regard to the internal logical
structure of the system, it only examines the
fundamental aspect of the system. It makes sure that
input is properly accepted and output is correctly
produced. [3] Some Different types of Black box
testing techniques are as follows:-

1) Equivalent Partitioning
2) Boundary value Analysis
3) Cause-Effect Graphing Techniques
4) Comparison Testing
 5) Fuzz Testing
 6) Model-based testing

Advantages of Black box testing:-

1) The number of test cases are reduced to achieve
reasonable testing

2) The test cases can show presence or absence of
classes of errors.

3) Black box tester has no “bond” with the code.
4) Programmer and tester both are independent of

each other.
5) More effective on larger units of code than clear

box testing.

Disadvantages of Black box testing:-

1) Test cases are hard to design without clear
specifications.

2) Only small numbers of possible input can actually
be tested.

3) Some parts of the back end are not tested at all.
4) Chances of having unidentified paths during this

testing
5) Chances of having repetition of tests that are

already done by programmer

C. GREY BOX TESTING

 The Gray box Testing Methodology is a software
testing method used to test software applications. The
methodology is platform and language independent.
The current implementation of the Gray box
methodology is heavily dependent on the use of a
host platform debugger to execute and validate the
software under test. Recent studies have confirmed

that the Gray box method can be applied in real time
using software executing on the target platform. Grey
box testing techniques combined the testing
methodology of white box and black box. Grey box
testing technique is used for testing a piece of
software against its specifications but using some
knowledge of its internal working as well. The
understanding of internals of the program in grey box
testing is more than black box testing, but less than
clear box testing. [3] The Gray box methodology is a
ten step process for testing computer software. Ten
Step Gray box Methodology.

1) Identify Inputs
2) Identify Outputs
3) Identify Major Paths
4) Identify Sub function SF X
5) Develop Inputs for SF X
6) Develop Outputs for SF X
7) Execute Test Case for SF X
8) Verify Correct Result for SF X
9) Repeat Steps 4:8 for other SF
10) Repeat Steps 7&8 for Regression

The Gray box methodology utilizes automated
software testing tools to facilitate the generation of
test unique software. Module drivers and stubs are
created by the toolset to relieve the software test
engineer from having to manually generate this code.
The toolset also verifies code coverage by
instrumenting the test code. “Instrumentation tools
help with the insertion of instrumentation code
without incurring the bugs that would occur from
manual instrumentation”. By operating in a debugger
or target emulator, the Gray box toolset controlled the
operation of the test software. The Gray box
methodology has moved out of a debugger into the
real world and into real-time. The methodology can
be applied in real-time by modifying the basic
premise that inputs can be sent to the test software via
normal system messages and outputs are then
verified using the system output messages

4.2.2. PERFORMANCE TESTING

Performance Testing involve all the phases as the
mainstream testing life cycle as an independent
discipline which involve strategy such as plan,
design, execution, analysis and reporting. [3] Not all
software has specification on performance explicitly.
But every system will have implicit performance
requirements. Performance has always been a great

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 142
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

concern and driving force of computer evolution. The
goals of performance testing can be performance
bottleneck identification, performance comparison
and evaluation. By performance testing we can
measure the characteristics of performance of any
applications. One of the most important objectives of
performance testing is to maintain a low latency of a
website, high throughput and low utilization. [3]

PERFORMENCE TESTING HAS TWO
FORMS:-

1. LOAD TESTING:

Load testing is the process of subjecting a computer,
peripheral, server, network or application to a work
level approaching the limits of its specifications. Load
testing can be done under controlled lab conditions to
compare the capabilities of different systems or to
accurately measure the capabilities of a single system.
In this we can check whether the software can handle
the load of many users or not.

2. STRESS TESTING:

Stress testing is a testing, which is conducted to
evaluate a system or component at or beyond the
limits of its specified requirements to determine the
load under which it fails and how. [3]

4.2.3. RELIABILITY TESTING

The purpose of reliability testing is to discover
potential problems with the design as early as
possible and, ultimately, provide confidence that the
system meets its reliability requirements. Reliability
testing is related to many aspects of software in which
testing process is included; this testing process is an
effective sampling method to measure software
reliability. In system after software is developed
reliability testing techniques like analyze or fix
techniques can be carried out to check whether to use
the software.

 4.2.4. SECURITY TESTING

Software quality, reliability and security are tightly
coupled. Flaws in software can be exploited by
intruders to opens security holes. Security testing
makes sure that only the authorized personnel can

access the program and only the authorized personnel
can access the functions available to their security
level. The security testing is performed to check
whether there is any information leakage in the sense
by encrypting the application or using wide range of
software’s and hardware's and firewall etc.

V. SOFTWARE TESTING STRATEGIES

A strategy for software Testing integrates software
test case design methods into a well planned Series of
steps that result in successful Construction of
software that result in successful construction of
software. Software testing Strategies gives the road
map for testing. A software testing Strategy should be
flexible enough to promote a customized testing
approach at same time it must be right enough.
Strategy is generally developed by project managers,
software engineer and testing specialist. There are
four different software testing strategies.

5.1. UNIT TESTING:

Unit is the smallest module i.e. smallest collection of
lines of code which can be tested. Unit testing is just
one of the levels of testing which go together to make
the big picture of testing a system. IT complements
integration and system level testing. It should also
complement code reviews and walkthroughs. Unit
testing is generally seen as a white box test class. That
is it is biased to looking at and evaluating the code as
implemented. Rather than evaluating conformance to
some set of requirements.

Benefits of Unit Testing:

1) Unit level testing is very cost effective.
 2) It provides a much greater reliability improvement
for resources expanded than system level testing. In
particular, it tends to reveal bugs which are otherwise
insidious and are often catastrophic like the strange
system crashes that occur in the field when something
unusual happens.
3) Be able to test parts of a project without waiting for
the other parts to be available,
4) Achieve parallelism in testing by being able to test
and fix problems simultaneously by many engineers,
 5) Be able to detect and remove defects at a much less
cost compared to other later stages of testing,
 6) Be able to take advantage of a number of formal
testing techniques available for unit testing, 7)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 143
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Simplify debugging by limiting to a small unit the
possible code areas in which to search for bugs,
 8) Be able to test internal conditions that are not
easily reached by external inputs in the larger
integrated systems
9) Be able to achieve a high level of structural
coverage of the code,
10) Avoid lengthy compile-build-debug cycles when
debugging difficult problems.

Unit Testing Techniques:

A number of effective testing techniques are usable in
unit testing stage. The testing techniques may be
broadly divided into three types:

1. Functional Testing
2. Structural Testing
3. Heuristic or Intuitive Testing

5.2. INTEGRATION TESTING:

 Integration testing is a systematic technique for
constructing the program structure while at the same
time conducting tests to uncover errors associated
with interfacing. The objective is to take unit tested
components and build a program structure that has
been dictated by design.

Different Integration testing Strategies are discussed
below:-

1. Top down Integration testing
2. Bottom up Integration testing

5.2.1. Top down Testing:

Top-down integration testing is an incremental
approach to construct program structure. Modules
are integrated by moving downward through the
structure, beginning with the main control module.
Modules subordinate to the main control module are
incorporated into the structure in either a depth-first
or breadth-first manner. [4]

The integration process is performed in a series of five
steps:

1. The main control module is used as a test
driver and stubs are substituted for all
components directly subordinate to the main
control module.

2. Depending on the integration approach
selected subordinate stubs are replaced one
at a time with actual components.

3. Tests are conducted as each component is
integrated.

4. On completion of each set of tests, another
stub is replaced with the real component.

5. Regression testing may be conducted to
ensure that new errors have not been
introduced.

It is not as relatively simple as it looks. In this logistic
problem can arise. Problem arises when testing low
level module which requires testing upper level. Stub
replace low level module at the beginning of top
down testing. So no data can flow in upward
direction.

5.2.2. Bottom up Testing:

Bottom-up integration testing, as its name implies,
begins construction and testing with atomic modules.
Because components are integrated from the bottom
up, processing required for components subordinate
to a given level is always available and the need for
stubs is eliminated. [4]

A bottom-up integration strategy may be
implemented with the following steps:

 1. Low-level components are combined into clusters
that perform a specific software sub function.
 2. A driver is written to coordinate test case input
and output.
3. The cluster is tested.
 4. Drivers are removed and clusters are combined
moving upward in the program structure.

5.3. ACCEPTENCE TESTING:

 Acceptance testing (also known as user acceptance
testing) is a type of testing carried out in order to
verify if the product is developed as per the standards
and specified criteria and meets all the requirements
specified by customer. [4] This type of testing is
generally carried out by a user/customer where the
product is developed externally by another party.

Acceptance testing falls under black box testing
methodology where the user is not very much
interested in internal working/coding of the system,
but evaluates the overall functioning of the system

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 144
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

and compares it with the requirements specified by
them. User acceptance testing is considered to be one
of the most important testing by user before the
system is finally delivered or handed over to the end
user.
Acceptance testing is also known as validation
testing, final testing, QA testing, factory acceptance
testing and application testing etc. And in software
engineering, acceptance testing may be carried out at
two different levels; one at the system provider level
and another at the end user level.

Types of Acceptance Testing:

5.3.1. User Acceptance Testing:

User acceptance testing in software engineering is
considered to be an essential step before the system is
finally accepted by the end user. In general terms,
user acceptance testing is a process of testing the
system before it is finally accepted by user.

5.3.2. Alpha Testing & Beta Testing:

Alpha testing is a type of acceptance testing carried
out at developer’s site by users.[4] In this type of
testing, the user goes on testing the system and the
outcome is noted and observed by the developer
simultaneously.

Beta testing is a type of testing done at user’s site. The
users provide their feedback to the developer for the
outcome of testing. This type of testing is also known
as field testing. Feedback from users is used to
improve the system/product before it is released to
other users/customers.

5.3.3 Operational Acceptence Testing:

This type of testing is also known as operational
readiness/preparedness testing. It is a process of
ensuring all the required components (processes and
procedures) of the system are in place in order to
allow user/tester to use it.

5.3.4. Contact and Regular Acceptance Testing:

In contract and regulation acceptance testing, the
system is tested against the specified criteria as
mentioned in the contract document and also tested
to check if it meets/obeys all the government and local
authority regulations and laws and also all the basic
standards.

5.4. STRESS TESTING:

System testing of software or hardware is testing
conducted on a complete, integrated system to
evaluate the system's compliance with its specified
requirements. System testing falls within the scope of
black box testing, and as such, should require no
knowledge of the inner design of the code or logic
System testing is actually a series of different tests
whose primary purpose is to fully exercise the
computer-based system. Although each test has a
different purpose, all work to verify that system
elements have been properly integrated and perform
allocated functions.

 Some of Different types of system testing are as
follows:-

1. Recovery testing
2. Security testing
3. Graphical user interface testing
4. Compatibility testing

5.4.1. Recovery testing:

Recovery Testing Recovery testing is a system test
that forces the software to fail in a variety of ways and
verifies that recovery is properly performed. If
recovery is automatic, re-initialization, check pointing
mechanisms, data recovery, and restart are evaluated
for correctness. If recovery requires human
intervention, the mean-time-to-repair is evaluated to
determine whether it is within acceptable limits.

5.4.2. Security Testing:

 Security testing attempts to verify that protection
mechanisms built into a system will, in fact, protect it
from improper penetration.

During security testing, the tester plays the role(s) of
the individual who desires to penetrate the system.
Anything goes! The tester may attempt to acquire
passwords through external clerical means; may
attack the system with custom software designed to
breakdown any defenses that have been constructed;
may overwhelm the system, thereby denying service
to others; may purposely cause system errors, hoping
to penetrate during recovery; may browse through
insecure data, hoping to find the key to system entry.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August-2015 145
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

5.4.3. Graphical User Interface Testing:

Graphical user interface testing is the process of
testing a product's graphical user interface to ensure it
meets its written specifications. This is normally done
through the use of a variety of test cases.

5.4.4. Compatibility Testing:

Compatibility testing, part of software non-functional
tests, is testing conducted on the application to
evaluate the application's compatibility with the
computing environment.

 VI. DISCUSSION

In this section difference between testing and
debugging is shown. Software testing is a process that
can be systematically planned and specified. Test case
design can be conducted, a strategy can be defined,
and results can be evaluated against prescribed
expectations.

Debugging occurs as a consequence of successful
testing. That is, when a test case uncovers an error,
debugging is the process that results in the removal of
the error. The purpose of debugging is to locate and
fix the offending code responsible for a symptom
violating a known specification. Debugging typically
happens during three activities in software
development, and the level of granularity of the
analysis required for locating the defect differs in
these three. [1]

 The first is during the coding process, when the
programmer translates the design into an executable
code. During this process the errors made by the
programmer in writing the code can lead to defects
that need to be quickly detected and fixed before the
code goes to the next stages of development. Most
often, the developer also performs unit testing to
expose any defects at the module or component level.
[1]

The second place for debugging is during the later
stages of testing, involving multiple components or a
complete system, when unexpected behavior such as
wrong return codes or abnormal program termination
may be found. A certain amount of debugging of the
test execution is necessary to conclude that the
program under test is the cause of the unexpected
behavior. [1]

VII. CONCLUSIONS

Software testing is the activity that executes software
with an intention of finding errors in it. Software
testing can provide an independent view of the
software to allow the business to appreciate and
understand the risk of software implementation. To
carry out software testing in a more effective manner,
this paper provides a comparative study of
techniques of software testing

 REFERENCES:

1. Software testing for wikipedia available at
 http://en.wikipedia.org/wiki/grey_box_testin

g#grey_box_tetsing
2. White box testing from wikipedia, the free

encyclopedia.
3. Security testing-wikipedia the free

encyclopedia available at
http://en.wikipedia.org/wiki/security-tetsing.

4. Software testing glossary available at
http://www.aptest.com/glossary.html#perfor
mance testing

5. Software testing by Jiantao Pan available at
 http://www.ece.cmu.edu/~roopman/des-

899/sw_testing/

Vasundhara Devi received a
degree in M.Tech Computer
Science and Engineering from
university of JNTUH and currently
working as Assistant Professor in
Sreenidhi Engineering College.
Her research interest includes
Software Testing.

IJSER

http://www.ijser.org/

	II. SOFTWARE TESTING GOALS

