
XML DOM Parsing Using Tree-Branch Symbiosis
Algorithm

Ms. Ruchita A Kale, Ms.Yogita S. Alone, Mr.Gaurav J. Sawale, Ms.Archana B. Pahurkar

Abstract— The XML (extensible Markup Language) has become the de facto standard for information representation and interchange on
the Internet. As extensible Markup Language (XML) becomes widespread it is critical for developers to understand the performance
characteristics and operational of XML processing. The processing of extensible Markup Language (XML) documents has been regarded
as the performance bottleneck in most systems and applications. XML parsing is performed a core operation on an XML document for it to
be accessed and manipulated. Using the tree branch symbiosis algorithms XML documents are parsed the document and its elements are
stored in a single table of database. It is not necessary to read the according to their hierarchical structure. In this paper, we proposed the
hash function when applied on the database would speed up the access time hence improve the XML processing performance means
accessing time is less.

Index Terms— extensible markup language (XML), Tree-Branch symbiosis, DOM, SAX.

—————————— ——————————

1 INTRODUCTION

Xtensible Markup Language means XML. XML is a meta-
language derived from Standard Generalized Markup
Language and is used to store and exchange structured

information. eXtensible Markup Language has become a de
facto standard for data representation and exchange, XML
data processing become more and more important for server
workloads like Web Servers and Database Servers and also in
messaging database and document processing.
 XML is designed to provide flexible information identifica-
tion in web documents. The important role of XML is the rep-
resentation and exchanging the any kind of structured docu-
ment because it is platform-independent, human readable and
extensible and also its own defined well data format. XML
data processing has its two technologies- DOM and SAX.
DOM (Document Object
 Model) is a platform and language-neutral interface to rep-
resent XML document as an object oriented model. The repre-
sentation of DOM is tree like and all data is in memory that’s
why it is less efficient in the term of storage and time. SAX
(Simple API for XML) is an event-driven, serial access mecha-
nism for accessing XML document. A Simple API for XML
(SAX) parser reads an XML document as a flow and invokes
call back functions provided by the application.
 A eXtensible Markup Language (XML) document essen-
tially can be represented as tree structure data model, the XML
document thus can be regarded as the serialization of tree
model in a depth-first search, left to right travelling order. For
representation of tree structure DOM object is much more
popular format. A DOM parser is much more compound and
much slower. Because DOM parser store entire data in mem-
ory, and at the time of data accessing, every time data access-

ing or reading from the memory and degrading the speed of
processing. Some advantages of DOM parser are-

 DOM is easier to use than SAX because it pro-
vides a familiar tree structure of objects.

 Structural manipulations of the XML tree, such as
reorder elements, adding to and deleting ele-
ments and attributes from tree, and renaming
elements, can be performed.

 Interactive applications can store the object model
in memory, enabling users to access and manipu-
late it. Accessing the data from memory easier
and user freely.

 A pluggable, scalable DOM can be created that
considerably improves scalability and efficiency.

The stages XML processing: parsing are access, modification,
and serialization. Although parsing is the most expensive op-
eration, there are no detailed studies that compare the process-
ing steps and associated overhead costs of different parsing
models, tradeoffs in accessing and modifying parsed data, and
XML- based applications’ access and modification require-
ments.

Fig.1.1 XML processing stages and parsing steps

 Storing XML document in a relational database that main-
tains its nodes and their relationships is a popular way in a
business application, which needs high precision of data and
their relationship. The Web technology M&S, a series of high
performance model for XML processing are needed be created
to meet the characteristics if magnanimous data exchange and

e

————————————————

 Author name is currently pursuing masters degree program in electric
power engineering in University, Country, PH-01123456789. E-mail: au-
thor_name@mail.com

 Co-Author name is currently pursuing masters degree program in electric
power engineering in University, Country, PH-01123456789. E-mail: au-
thor_name@mail.com
(This information is optional; change it according to your need.)

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 233

IJSER © 2016
http://www.ijser.org

IJSER

processing.

 The storage of a XML document in a relational database
with its original structure in general business application, the
several important benefits are-

 A node and its path can be queried easily and fast due
to its perspicuity structure.

 The data can be managed by DBMS easily.
 It is useful for data transfer.

2 RELATED WORK

A. Detailed XML Parser Overview
 In 2002 , Srikanth Karre et.al explains that the parsing
of XML documents can be done using two approaches, Event
Based Parsing and Tree Based Parsing. In Event Based Pars-
ing, the XML data is parsed sequentially, one component at a
time, and the parsing of events such as the start of a docu-
ment, or the end of a document are reported directly to the
application. SAX (Simple API for XML) is the standard API for
event-driven parsing. In Tree Based Parsing, the XML docu-
ment is compiled into an internal tree structure and stored in
main memory [1]. Applications can then use this tree structure
for navigation and data extraction. For example, the Docu-
ment Object Model (DOM) uses tree based parsing, providing
a standard set of objects for representing HTML and XML
documents, a standard model of how these objects can be
combined, and a standard interface for accessing manipulating
them.
 In 2006, Tong, T. et al, studied the XML parser. They con-
clude the work of parser can read the XML document compo-
nents via Application Programming Interfaces (APIs) in two
approaches. For stream-based approach (also known as event-
based parser), it reads through the document and signal the
application every time a new component appears. As for tree-
based approach, it reads the entire document into a memory
resident collection of object as a representation of original
document in tree structure [5]. As a result, tree-based ap-
proach is not suitable for large-scale XML data because it can
easily run out of memory.
 Chengkai Li- XML Parsing, SAX/DOM, explains that in
every application that takes XML document to process, pars-
ing is the first important step to be done. Also explains that
DOM previously was used for modeling HTML after that the
different levels of DOM were proposed and that has been used
to parse the XML document which models the XML document
as a tree of node where the application can read, write and
update the contents of the nodes whereas SAX (Simple API for
XML) is a event driven interface which reads the XML docu-
ment, generates the events and triggers the corresponding
XML handlers [24].

B. Parallel XML Parsing
 In 2007, Wei Lu et.al. states that there are a number of
ways to improve XML parsing performance. One of the ap-
proaches would be to use pipelining. In this approach, XML
parsing could be divided into a number of stages. Each stage
would be executed by a different thread. This approach may

provide speedup, but software pipelining is often hard to im-
plement well, due to synchronization, load-balance and mem-
ory access costs. More promising is a data-parallel approach.
Here, the XML document would be divided into some number
of chunks, and each thread would work on the chunks inde-
pendently. As the chunks are parsed, the results are merged
[7]. To divide the XML document into chunks, and could sim-
ply treat it as a sequence of characters, and then divide the
document into equal-sized chunks, assigning one chunk to
each thread. This requires that each thread begin parsing from
an arbitrary point in the XML document.
 Since an XML document is the serialization of a tree-
structured data model (called XML Infoset) traversed in left-
to-right, depth-first order, such a division will create chunks
corresponding to arbitrary parts of the tree, and thus the pars-
ing results will be difficult to merge back into a single tree.
Correctly reconstructing namespace scopes [7].The results of
parsing XML can vary from a DOM-style, data structure rep-
resenting the XML document, to a sequence of events manifest
as callbacks, as in SAX-style parsing. The parallel approach
focuses on DOM-style parsing, where a tree data structure is
created in memory that represents the document. Their im-
plementation is based on the production quality libXML2
parser, which shows that their work applies to real-world
parsers, not just research implementation.

C. Evaluating performance Using Different Tech-
niques Or Algorithm-

 In 2013, V.M. Deshmukh et. al. presented the per-
formance study of XML data parsing by evaluating the parsers
using time as a parameter. They mainly focused on different
data structures which are linear in nature like stack, array,
queue and linked list .Data structure based parser works in
main memory and uses various data structure for parsing. In
the implementation, the proposed parser removes the ele-
ments from document and serially checks if the document is
well formed or not using Linked list, Queue, Stack and Array
simultaneously, which increases its performance over SAX
and DOM parser. Proposed the conclusion by observed analy-
sis and graphical results that the data structure based parser is
effi-
cien
t
tha
n
SA
X
and
DO
M
par
sers
.
[18]
.

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 234

IJSER © 2016
http://www.ijser.org

IJSER

Fig-2.1 Architecture View for parser using data structure

 They compare the performance of different parsing like
DOM, SAX and also the different data structure. Using the
different data structure for accessing or reading the data from
the database required less time as compared to others method.
Also they explain the design and development of an efficient
XML parsing algorithm, Parsing is a core operation performed
before an XML document can be navigated, queried, or ma-
nipulated. Recently, high performance XML parsing has be-
come a topic of considerable interest.
 In 2010, Gong Li et. al.- Present a XML processing model
on data exchange between XML document and relational da-
tabase, model parsing a XML document to a DOM object, ker-
nel of the model was the tree-branch symbiosis algorithm, by
which, the efficiency of DOM building will be promoted sig-
nificantly. The processing of XML document s has been re-
garded as the performance bottleneck in most systems and
applications. A number of techniques have been developed
and improve the performance of XML processing, ranging
from the schema-specific model to the streaming-based model
to the hardware acceleration. These methods only address
parsing and scheduling the XML document in memory. Al-
though there are a few of works have discussed the efficiency
of the data read- write between XML and Relational Database,
they constructed the DOM and reading relational database
synchronously and neglected the differences of pace between
DOM (a general format of XML document in memory) build-
ing and relational database reading, which will reduce the
performance of the entire system.
 A new processing model for storing and building XML
document in data transfer between XML and relational data-

base. In this Model, a XML document is parsed and its ele-
ments are stored in a single table of database instead, it is not
necessary to read the nodes according to their hierarchical
structure, thus leveraging the workload of DOM building to
memory by the algorithm called Tree-Branch intergrowth. All
data was stored in relational database. Using tree branch sym-
biosis algorithms for XML processing, they shows the com-
parison between old algorithms and tree branch symbiosis
algorithm [16].

3 SYSTEM DESIGN

 The system used DOM parser for the parse the particular
file. The input to the system is a XML file and output is in the
form bar diagram. The following Component diagram ex-
plains the external view of the system.

Fig- 3.1 Component diagram

 In the above component diagram, the parser parse the
various XML files using
DOM parser, after
parsing parser parse
document and arrange in
the form of tree structure
and whole tree is
saved in memory and
evaluate its performance
on the basis of parsing
time, searching time
of token. All evolution
results are stored in
combine as well as selec-
tive table on the database
and per- form all basic
operation on the database.
Finally shows the com-
parison in the form of bar
chart.
 In proposed sys-
tem, DOM parser is
used for the parse the
particular file. The input to
the sys- tem is a XML
file that we need to
browse and check file is
valid or not. The parser
parse the various XML
files and evaluate its performance on the basis of parsing time,
searching time of token and represent in the form of bar chart.
The detail internal working of the system has been explained
using the following flow diagram of the proposed system

DOM Parser

Operation On
 Database

Compute Various
 Parameters

Parse DocumentOriginal XML
 Document

Graphical Analysis

Database

INPUT

OUTPUT

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 235

IJSER © 2016
http://www.ijser.org

IJSER

Fig- 3.2 Data Flow Diagram

4 CONCLUSION

 In Tree-Branch symbiosis XML processing model the nodes

of a XML document are stored in a list structure in relational

database for the purpose of saving the time cost by the SQL sen-

tences. Although there is a complication of tree building process,

this work is done in memory that the cost is almost the same with

traditional methods in the precondition of high performance

hardware. The Tree-Branch symbiosis mechanism the DOM tree

building can have the significant performance improvement. This

improvement was only in aspect of total processing time because

tree branch symbiosis algorithm for XML processing, arrange the

data in the form of AVL tree using hashing technique and all data

is stored in single database instead of multiple

REFERENCES

[1] Srikanth Karre and Sebastian Elbaum,‖ An Empirical Assessment of

XML Parsers‖,2002.
[2] Kai Ning, Luoming Meng,―Design and Implementation of DTD-based

XML parser‖, proceedings of ICCT2003.
[3] Nicola, M. and John, J., ―XML Parsing: a Threat to Database

Performance‖ International Conference on Information and

Knowledge Management, 2003, pp. 175-178.
[4] Robert A. van Engelen, ―Constructing Finite State Automata for High-

Performance XMLWeb Services‖, in the proceedings ofInternational
Symposium onWeb Services and Applications (ISWS) 2004.

[5] Tong, T. et al, ―Rules about XML in XML‖, Expert Systems with

Applications, Vol. 30, No.2, 2006, pp. 397-411.
[6] Su Cheng Haw ,G. S. V. Radha Krishna Rao,‖ A Comparative Study

and Benchmarking on XML Parsers‖, Advanced Communication
Technology, The 9th International Conference (Volume:1) ISSN

:1738-9445 , 2-14 Feb. 2007 pp. 321 – 32.
[7] Wei Lu, Dennis Gannon, ―Parallel XML Processing by Work Stealing”,

SOCP'07, June 26, 2007, Monterey, California, USA.

[8] Yinfei Pan, Wei Lu, Ying Zhang, Kenneth Chiu,‖A Static Load-
Balancing Scheme for Parallel XML Parsing on Multicore CPU”s, Seventh

IEEE International Symposium on Cluster Computing and the
Grid(CCGrid'07) 0-7695-2833-3/07 $20.00 © 2007.

[9] Sebastian Graf, Marc Kramis, and Marcel Waldvogel, “ Distributing XML

with Focus on Parallel Evalution”, Databases, Information systems, and

Peer-to-Peer computing, Sixth International Workshops, DBISP2P 2008,

Auckland, New Zealand, August 23, 2008.

[10] B.Naga malleswara Rao, N.Samba Siva Rao, V. Khanaa, “Exploiting XML

Dom for Restricted Access of Information”, International Journal of Recent

Trends in Engineering, Vol 2, No. 4, November 2009.

[11] Yusof Mohd Kamir, Mat Amin Mat Atar, ―High Performance of DOM
Technique in XML for Data Retrieval”, 2009 International Conference

on Information and Multimedia Technology.
[12] Lan Xiaoji Su Jianqiang Cai Jinbao, ―VTD-XML-based Design and

Implementation of GML Parsing Project‖, IEEE Information
Engineering and Computer Science, 2009. ICIECS 2009.
International Conference on 19 dec 2009 , pp.1 – 5.

[13] Xiaosong Li, Hao Wang, Taoying Liu, Wei Li,” Key Elements Tracing
Method for Parallel XML Parsing in Multi-core System”, 2009
International Conference on Parallel and Distributed Computing,

Applications and Technologies, 978-0-7695-3914-0/09 $26.00 © 2009
IEEE DOI 10.1109/PDCAT.2009.64

[14] M. Van Cappellen, Z. H. Lui, J. Melton, and Maxim Orgiyan, ―XQJ -
XQuery Java API is Completed‖, SIMOD Record, vol. 38, no. 4, 2009.

[15]] Shu Yuan-zhong,‖Research of optimizing device description

technology based on XML in EPA‖ 2009 Second International
Symposium on Electronic Commerce and Security.

[16] Gong Li and Liu Gao-Feng, Liu Zhong and An Ru-Kui, ―XML
Processing by Tree-Branch symbiosis algorithm‖, 2010 2nd International

Conference on Future Computer and Communication, Volume 1.
[17] V.M. Deshmukh, G.R. Bamnote, ―DESIGN AND DEVELOPMENT OF

AN EFFICIENT XML PARSING ALGORITHM: A REVIEW” ,

International Journal of Applied Science and Advance Technologyz,
January-June 2012, Vol.1, No. 1, pp. 58.

[18] Ms. V.M.Deshmukh, Dr. G.R.Bamnote, ―An Empirical Study: XML
Parsing using Various Data Structures‖, International Journal of

Computer Science and Applications, Vol. 6, No.2, Apr 2013.
[19] Jie Tang, Shaoshan Liu, Chen Liu, Zhimin Gu, and Jean-Luc

Gaudiot,‖ Acceleration of XML Parsing through Prefetching‖, IEEE

TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 8, AUGUST 2013
[20] Mohammad Khabbaz, Dirar Assi,Reda Alhaj, Moustafa Hammad,‖

Parse Tree Based Approach for Processing XML Streams‖, IEEE IRI 2013,
August 14-16, 2013, San Francisco, California, USA 978-1-4799-1050-

2/13/$31.00 ©2013 IEEE
[21] Bruno Oliveira1,Vasco Santos1 and Orlando Belo2,‖ Processing XML

with Java – A Performance Benchmark‖, International Journal of New

Computer Architectures and their Applications (IJNCAA) 3(1): 72-85
The Society of Digital Information and Wireless Communications

(SDIWC) 2013 (ISSN: 2220-9085) ,pp. 72-85.
[22] Michael R. Head† Madhusudhan Govindaraju, ―Parallel Processing of

Large-Scale XML-Based Application Documents on Multi-core

Architectures with PiXiMaL‖, Fourth IEEE International Conference on
eScience.

[23] Wei Lu , Kenneth Chiu, Yinfei Pan, ―A Parallel Approach to XML

Parsing‖.
[24] Chengkai Li,‖XML Parsing, SAX/DOM‖.

[25] Li Zhao , Laxmi Bhuyan,‖ Performance Evaluation and Acceleration for
XML Data Parsing‖.

[26] W3C, ―Extensible Markup Language (XML)‖. [Online].

 Available: http://www.w3.org/XML.

[27] AVL Binary Search Tree. [online].

 Available: en.wikipedia.org/wiki/AVL_tree.

[28] Available:http://www.webopedia.com/TERM/H/hashing.html
[29] Hashing techniques [Online].

Available:https://www.cs.tcd.ie/Owen.Conlan/4d2/4D2
5&6_Hashing_Techniques_v1.02.pdf

[30] XML Pull Parser, http://www.extreme.indiana.edu/xgws/xsoap/xpp/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 236

IJSER © 2016
http://www.ijser.org

IJSER

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4195058
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4195058
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362513
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362513
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5362513
http://www.w3.org/XML
http://www.webopedia.com/TERM/H/hashing.html
https://www.cs.tcd.ie/Owen.Conlan/4d2/4D2%205&6_Hashing_Techniques_v1.02.pdf
https://www.cs.tcd.ie/Owen.Conlan/4d2/4D2%205&6_Hashing_Techniques_v1.02.pdf
https://www.cs.tcd.ie/Owen.Conlan/4d2/4D2%205&6_Hashing_Techniques_v1.02.pdf
http://www.extreme.indiana.edu/xgws/xsoap/xpp/

International Journal of Scientific & Engineering Research, Volume 7, Issue 2, February-2016
ISSN 2229-5518 237

IJSER © 2016
http://www.ijser.org

IJSER

