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Abstract— Detection of zero day malware has been the great challenge for researchers from long time. Traditional signature based anti-

malware scanners detect malware based on their unique signatures. The major drawback of such traditional signatures based scanners is 
that it has no protection against zero-day or unseen malware. Further usage of packers and obfuscation techniques empowered the 
malware writers to recreate malware variants quickly with slight or no change in malcode. These new variants are undetectable by 
traditional signature based scanner until their signatures are not present in database. Therefore researchers are working towards finding 
patterns or features which have unchangeable characteristics of malware even though the malware mutates or obfuscates itself. To 
address the limitation of traditional signature based scanner, we propose the malware detection method based on extracting relevant 
application programming interface (API) calls from sub categories of malware. These malware are categorized based on their infection 
mechanism and actions performed. And because of their fundamental difference in infection mechanism, they do not share similar type of 
API calls in all malware categories. In this paper, we elucidate an automated framework for analyzing and classifying executables based on 
their relevant API calls. We explain all the software components used to make the framework fully automatic for extracting API calls. We 
further explain the Document Class wise Frequency feature selection measure (DCFS) to get the relevant API calls from the extracted API 
calls to increase the detection rate. We conclude the paper with our experimental result and discussion. 

 

Index Terms- Malware;  Packers;  Disassembly; Windows API; Document Classwise frequency  

1.  INTRODUCTION  

Any program having the malicious intent can be 

classified as malware or computer infection program. It is a 
collective term for any malicious software which performs 
hidden unintended actions affects the integrity of the system 
and cause damage, loss without the knowledge of user. The 
definition of the malware given by McGraw and Morrisett [1] 
as “any code added, changed, or removed from a software 
system in order to intentionally cause harm or subvert the 
intended function of system”. Filiol [2] defines malware as “a 
simple or self-replicating program, which discreetly install 
itself in a data processing system, without user’s knowledge or 
consent, with a view to either endangering data confidentiality 
or data integrity and system availability or making sure that 
user to be framed for computer crime”. New malware variants 
are discovered at an alarmingly high rate, some malware 
families featuring tens of thousands of currently known 
variants. The need for security is in fact a response to the 
increasing number of attacks led against information systems. 
Previous works and literature [3] [4] has shown that one single 
technique alone cannot detect all types of malware. The two 
most popular techniques for the malware detection are 
commonly known as Signature-based and Anomaly-based. 
Signature based techniques is well known for its high 
detection rate for known malware whose signatures are 
present in the database but has low detection or provide no 
protection from zero day malware. Using the obfuscation 
technique malware writers are creating new malware without 
changing the essence of malware.  These new malware are the 
variant of known malware and easily bypass the detection. 
Anomaly based detection techniques work on the concept of 
normal and anomalous behavior of the program to decide the 
maliciousness. The key advantage of anomaly based detection 

technique is its ability to detect zero-day attack. The success of 
these techniques depends on what features should be learnt in 
training phase to discriminate malware and benign accurately. 
In this work, we followed the static analysis approach to 
analyze the PE executable based on their API calls. We used 
static analysis tool IDA Pro to disassemble the binary file to 
analyze and extract the Windows API. 
 
This paper is organized as follows: the next section briefly 
describes various types of malware. Section III describes the 
contribution of the research work.  Section IV highlights the 
background of the work, and Section V elaborates the 
implementation of automated framework used for the 
extraction of API calls. The analysis and experimental results 
are shown in Section VI followed by Section VII mentioning 
the limitation and future work and finally conclusion in 
Section VIII.  

2.MALWARE TYPES 

2.1 VIRUS 

A computer virus is a program, a block of executable code, 
which attaches itself to another program in order to reproduce 
itself without the knowledge of User. It needs a host program 
to cause harm. There are different types of computer viruses 
for example boot sector viruses, parasitic viruses, polymorphic       
viruses and metamorphic viruses. 

2.2 Worm 

 A computer worm does not require any host program and 
replicates itself by executing its own code independent of any 
other program. In general, virus attempt to spread through 
programs/files on single computer while worm spread 
throughout a network aiming to infect other connected 
computers. Well-known examples of worms are Code Red, 
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Slammer, Mydoom, Netsky. They usually exploit security 
flaws in communicate applications or in network protocols.  

2.2 Trojan Horse 

A Trojan horse is a software program that appears to be 
very useful. It performs the desirable function for the users as 
stated but secretly performs some unauthorized actions like 
stealing information or harm the integrity of the system. Once 
installed in the victim’s computer, it secretly enables the 
attacker to access all or part of victim’s computer resources. 
Such Trojan horses can be classified as spyware as well. The 
most popular Trojan horse programs are Back Orifice, Netbus 
and Subseven. 

2.3 Logic Bombs 

A logic bomb is a non self-reproducing malware, which 
install itself into the system and waits for some trigger 
incident or  external event, such as the arrival of a specific date 
or time, or the creation or deletion of a specific data item such 
as a file or a database entry, before performing a damaging or 
an offensive function.  

3 CONTRIBUTION OF THE PAPER 

The main contributions of this paper are as follows: 

 Building of malware dataset to perform experiments in 
the absence of publicly available malware dataset. 

 Analysis of the fully automated framework to extract 
the API calls. 

 Malware category-wise relevant API feature selection 
using Document class-wise frequency and 
classification. 

We build the dataset by downloading the variety of 
malware executables from VX Heavens source [14].  Even 
though the malware executables were easily downloadable, 
these cannot be analyzed straight forward because they were 
packed and obfuscated. Identification and unpacking of 
malware is the pre-requisite requirement for the research work. 
Without proper unpacking and de-obfuscation, the statistical 
analysis cannot be performed accurately. To deal with packing-
unpacking and de-obfuscation of these malware, we 
implemented an automatic system for identification of packer 
and unpacking the malware and keep the log record for 
analysis. After unpacking the malware executables, we used 
automatic framework to extract the API calls invoked by the 
executables. Further we performed the DCFS based feature 
selection measure to get the relevant API calls for each 
malware category separately to increase the detection and 
classification accuracy.  

4 BACKGROUND 

Static analysis and Dynamic analysis are two primary 
approaches dominated in this area. Dynamic analyses refer to 
techniques to profile the actions of the malware binary at 
runtime [7]. Static analyses refer to techniques to disassemble 
and analyse the logical structure, flow, and data content stored 
within the binary itself. While both analysis techniques yield 
important (and sometimes complementary) insight into the 

capabilities and purpose of a malware binary, these techniques 
also have their unique advantages and disadvantages.  

Dynamic analysis provides only a partial “effects-oriented” 
profile of the full potential of a given malware binary. 
Dynamic analysis cannot reveal the effects of programming 
logic that fails to execute during the runtime analysis. For 
example, the malware binary may include unsatisfied trigger 
conditions (e.g., logic revealed only when certain 
environmental or temporal conditions are satisfied), or suicide 
logic that can be triggered when process tracing is detected or 
when other self-protection conditions are met. 

Static program analysis offers the potential for a more 
comprehensive assessment of the entire code and data of the 
program. For example, by analysing the sequence of invoked 
system calls and APIs, performing control flow analysis, and 
tracking data segment references, it is possible to infer logical 
code bombs, temporal triggers, and other malicious system 
interactions. Features such as the presence of network 
communication logic, registry and OS manipulations, and 
object creations (e.g., files, processes, inter-process 
communication) can be detected, whether or not these 
capabilities are exercised at runtime.   

 User-level malware programs require the invocation of 
system calls to interact with the OS in order to perform 
malicious actions. Therefore, analysing and extracting 
malicious behaviours from these programs requires the 
identification of system calls invoked within the code. 
Although system calls in operating systems are predefined 
mechanisms for trapping to the kernel and asking for services, 
application programs may interact with other standard helper 
modules provided by the OS that eventually trap into the 
kernel. As an example, in Windows, the Win32 API is a 
collection of services provided by helper DLLs that reside in 
user space, while the native APIs are services provided by the 
kernel. In such a design, the user-level API allows a higher-
level understanding of behaviour because most of the 
semantic information is lost at the native level. Therefore, an 
in-depth binary static analysis requires the identification of all 
Windows API calls, and call sequences, made within the 
program. 

Literature has shown that API call can be explored to model 
the program behavior. Analysis of API calls has been explored 
for generation of birthmark on portable execution (PE) in [5]. 
The study on the related area [11] [12] clearly indicates the 
scope of the API calls and their call sequence in order to detect 
the program behavior. Other than API, assembly features and 
hex-bytes features have been successfully tried out on N-gram 
based statistical analysis for the malware detection but they are 
not feasible and practical because of very large numbers of 
features generated. 

Understanding the issue of API resolution requires 
understanding how Windows executables refer to APIs from 
the various Windows libraries. The PE executable file format 
includes an import section that determines what DLLs are 
imported by the executable. The information contained in the 
The unpacked malware were arranged in the respective 
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categories and fed to the disassembler for API call extraction.  
For each category the extracted API’s were further refined 
using DCFS measure. Fig. 1 shows the system architecture of 
an automated process. The following are the steps followed by 
the automated system. import table is used by the loader at 
runtime to identify the addresses of the referred APIs so that 
whenever an API is called, a jump to the API code is executed 

5 IMPLEMENTATION OF FRAMEWORK 

In this section we elaborate the complete framework for 
API extraction. Most of the malware in the dataset were 

compressed, packed and obfuscated. The freely available 
unpackers like UPX, ASPack, FSG and UPack are used in the 
automated system to unpack the executables before 
disassembly and analysis. 

 

 Unpack the malware. 

 Extraction of API Calls using IDA Pro and export into 

Mysql database using ida2sql python plugin. 

 Selection of relevant API Calls. 

  

 
 

 

 

 

Figure 1.  Framework for API Call Extraction and Feature Selection for Malware Detection 
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Step 1: Unpack the malware 

Packers have become the favorite tool for malware writers 
to create more variants of the existing malware with slight 
change in malware code. This generates totally new malware 
having the same malware logic with different signature to 
avoid detection. Identification of right packer is core of this 
step. Partial unpacked malware will not provide proper 
information about the executable. We have implemented java 
based program to automate the identification of the packer 
used for malware and then unpack it for further analysis. This 
is achieved by using the packer identification tool. 

Step 2: Extraction of API Calls 

The framework uses the most reliable disassembly tool for 
static analysis, namely, Interactive Disassembler Pro (IDA Pro) 
[8] since it can disassemble all types of non-executable and 
executable files (such as ELF, EXE, PE, etc.). It automatically 
recognizes API calls for various compilers and provide the 
hooks to call custom defined plugins resulting in incredibly 
powerful implementation with flexible levels of analysis and 
control. IDA Pro loads the selected file into memory to analyse 
the relevant portion of the program. IDA Pro generates the 
IDA database files into a single IDB file (.idb) after 
disassembling for analysing the information extracted from 
the binary.  

 
IDA Pro provides access to its internal resources via an 

API that allows users to write plugins to be executed by IDA 
Pro. We have used idapython [9] plugin which facilitates us to 
run the disassembly module automatically for generating the 
consolidated .idb database. The ida2sql plugins used to export 
.idb database into MySQL database for better binary analysis. 

 
ida2sql plugin generates 16 tables (Address comments, 

Address reference, Basic blocks, callgraph, 
control_flow_graph, data, expression_substitution, expression 
_tree, functions, instructions, metainformation, modules, 
operand_expressions, operand_strings, operand_tuple, 
sections) [10] for each and every binary executable. Each of 
them contains different information about the binary content. 
For example Function table contains all the recognizable API 
system calls and non-recognizable function names and the 
length (start and the end location of each function). 
Instructions table contains all the operation code (OP) and their 
addresses and block addresses. We extracted the list of API 
calls using Function table. Reference from the Microsoft 
Developer Network (MSDN) [15] is used for matching and in 
identifying the windows API’s. Java based program was 
implemented to compare and match the API from MSDN and 
the API calls generated in the database for the malware 
sample set. To list all the API calls that are associated with 
malcode are collected using machine opcodes such as Jump 
and Call operations as well as the function type. 
 
Step 3: Selection of relevant API Calls  

      We have used the concepts of relevant API calls and Class-
wise document frequency for selecting the relevant API calls. 

The aim is to identify a set of API calls that are common to the 
set of malware and similarly another set of API calls that are 
common to the benign executables.  Let D be the training set 
containing a set of malware programs V and a set of benign 
programs B, i.e., D = B ∪ V. Pujari et al. [13] proposed a 
feature extraction method based on n-grams and the feature 
selection measure is a variant of document frequency. For n-

gram Ng, the document frequency  (Ng, P) of Ng with 

respect to a program P is 1 if Ng is present in P and 0, 
otherwise. The Class-wise document frequency of Ng with 
respect to a class C is 

                             CP
PNg ),( .  

 In other words, the Class-wise document frequency is the 
number of executable programs in C that contain Ng. Fig. 2 is 
a flow chart describing the selection of relevant API calls using 
DCFS.  
 
 

 
 
 

Figure 2.  Flow Chart for selection of Relevant API calls 
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6 EXPERIMENTAL RESULTS  

Malware dataset was built using the executables 
downloaded from the VX-Heavens [14] website. The 
malware dataset was prepared keeping variety of 
malware. We collected 210 malware executables from [14] 
and 300 benign executables from system32 folder in 
Windows XP system. All the executables were in 
Windows PE format. A statistical analysis of the Windows 
API calling sequence reflects the behaviour of a particular 
piece of code. In this research work, the relevant API calls 
were extracted for each category of malware to capture 
their behaviour. The extracted API’s were further refined 
using document class-wise frequency measure to extract 
relevant API calls. These relevant API calls were provided 
to classifier as training to prepare the model to classify the 
given program as malicious or benign.   The experiments 
were performed on various values of n-gram on SVM 
classifier. Experiments results are shown in Table 1. 

 
 

 

 
 

7 LIMITATIONS AND FUTURE WORK 

In this work, we focused on the Windows API calls 
and hence it will be limited to the detection of Windows 
PE malware. Identification of packer is very important 
step in this framework. The executables packed with 
unknown packer cannot be analysed until the correct 
packer is identified. Hybrid features can be tried to 
increase the detection accuracy and reduce the false 
positive.  

8 CONCLUSION 

A statistical analysis of Windows API calls in 
malware reflects the behavior of a piece of code.  In this 
research project, the relevant APIs were extracted from 
each malware category and further refined using DCFS 
measure to classify the executable as malicious or benign. 
The entire static detection process was fully automated for 
classification system. The experimental results for 
different sizes of n-grams are promising as a benchmark 

for improvement of the framework with different set of 
features thereby increasing the accuracy. 

ACKNOWLEDGMENT  

This research was conducted at the Centre for 
Artificial Intelligence & Robotics (CAIR), Bangalore. The 
authors would like to thank Director of CAIR and Division 
Head of ISD, CAIR for their support throughout this project. 
Special thanks to Dr. R. Anitha and Ms. Shina Sheen of PSG 
College of Technology for their helpful comments and 
suggestions. 

REFERENCES 

[1] Gary McGraw, Greg Morrisett, “Attacking Malicious 
Code: A report to the Infosec Research Council”, IEEE 
Software, Sep/Oct 2000. 

[2] Eric Filiol, “Computer viruses: from theory to 
applications”, First edition, IRIS International Series, 
Springer Verlag France, ISBN 2-287-23939-1, June 2005. 

[3] Vinod, P., Jaipur, R., Laxmi, V. and Gaur, M., “Survey on 
Malware Detection Methods”,  Hack. 2009, 74.  

[4] Mihai Christodorescu and Somesh Jha, “Testing Malware 
Detectors”, in Proceedings of ISSTA’04, July 11 - 14, 2004, 
pages 33-44, Boston, MA USA, ACM Press.  

[5] Sharif, M., Yegneswaran, V., Saidi, H., Porras, P. & Lee, 
W., “Eureka: A framework for enabling static malware 
analysis”, Computer Security - ESORICS, Lecture Notes in 
Computer Science (LNCS), Springer, 2008, 5283/2008, 
481-500.   

[6] Wang, C.; Pang, J.; Zhao, R. & Liu, X., "Using API 
Sequence and Bayes Algorithm to Detect Suspicious 
Behavior", 2009 International  Conference on 
Communication Software and Networks, 2009, 544-548. 

[7] Willems, C.: CWSandbox: Automatic Behaviour Analysis 
of Malware (2006), http://www.cwsandbox.org/ 

[8] Hex-Rays SA, IDA Pro, http://www.hex-
rays.com/idapro/, 2008. 

[9] Idapython, http:// code.google.com/p/idapython/, 2009. 
[10] Zynamics BinNavi,  http://www.zynamics.com/binnavi. 
[11] Sami, A., Rahimi, H., Yadegari, B., & Hashemi, S., 

“Malware Detection Based on Mining API Calls”, ACM 
Symposium on Applied Computing, April 2010. 

[12] Alazab, M., Venkatraman, S. & Watters, P., “Malware 
Detection Based on Structural and Behavioural Features of 
API Calls”, 1st International Cyber Resilience Conference, 
Edith Cowan University, Perth Western Australia, 23rd 
August 2010. 

[13] D. Krishna Sandeep Reddy, Arun K. Pujari, “ N-gram 
analysis for computer virus detection”, Journal in 
Computer Virology, 231-239, Volume 2, Number 1, 
August 2006. 

[14]  VX Heavens,  http://vx.netlux.org 
[15]  Windows API Functions, MSDN, 

http://msdn.microsoft.com/enus/ 
  library/aa383749%28VS.85%29.aspx., January 2010. 

[16]  H. Witten and E. Frank.,  “Data Mining: Practical 
machine learning tools   and  techniques”, Morgan 
Kaufmann, 2nd edition, 2005. 

[17] Fanglu Guo, Peter Ferrie, Tzi-cker Chiueh, “A Study of 
the Packer Problem and Its Solutions”, LNCS, Springer-
Verlag Berlin Heidelberg, 2008. 

[18] Wei Yan, Zheng Zhang, Nirwan Ansari, “Revealing 
Packed Malware”, IEEE Computer Society, 2007. 

Size of n-gram Accuracy 

1 
 

97.23 % 
 

2 94.47% 

3 93.96 % 

4 91.70% 

TABLE 1  EXPERIMENTAL RESULTS FOR VARIOUS SIZE OF N-GRAMS 

 



International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012                                                                                  6 
ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org 

[19]  M. Zubair Sha, S. Momina Tabish1, Fauzan Mirza, 
Muddassar Farooq, “PE-Miner: Mining Structural 
Information to Detect Malicious Executables in Realtime”, 

In Proceedings of the 2009 Recent Advances in Intrusion 
Detection (RAID) Symposium-Springer. 

[20] Osterman Research White Paper, “The Global Malware 
Problem: Complacency Can be Costly”, 
http://www.ostermanresearch.com/downloads.htm#Sec
urity, June 2011. 

[21] Abou-Assaleh,T.,Cercone,N.,Keselj,V., Sweidan,R, 
“Detection of new malicious code using n-grams 
signatures”,  In: PST, pp. 193–196, 2004. 

[22] O.Kostakis, J.Kinable, H.Mahmoudi, Kimmo Mustonen, 
“Improved Call Graph Comparison Using Simulated 
Annealing”, SAC 11, ACM, Taiwan, March 2011. 

[23] H. Flake, “Structural comparison of executable objects”, in 
Proceedings of the IEEE Conference on Detection of 
Intrusions, Malware and Vulnerability Assessment 
(DIMVA), 2004, pp.161 – 173. 

 

 


