
International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Windows API based Malware Detection and
Framework Analysis

Veeramani R, Nitin Rai

Abstract— Detection of zero day malware has been the great challenge for researchers from long time. Traditional signature based anti-

malware scanners detect malware based on their unique signatures. The major drawback of such traditional signatures based scanners is
that it has no protection against zero-day or unseen malware. Further usage of packers and obfuscation techniques empowered the
malware writers to recreate malware variants quickly with slight or no change in malcode. These new variants are undetectable by
traditional signature based scanner until their signatures are not present in database. Therefore researchers are working towards finding
patterns or features which have unchangeable characteristics of malware even though the malware mutates or obfuscates itself. To
address the limitation of traditional signature based scanner, we propose the malware detection method based on extracting relevant
application programming interface (API) calls from sub categories of malware. These malware are categorized based on their infection
mechanism and actions performed. And because of their fundamental difference in infection mechanism, they do not share similar type of
API calls in all malware categories. In this paper, we elucidate an automated framework for analyzing and classifying executables based on
their relevant API calls. We explain all the software components used to make the framework fully automatic for extracting API calls. We
further explain the Document Class wise Frequency feature selection measure (DCFS) to get the relevant API calls from the extracted API
calls to increase the detection rate. We conclude the paper with our experimental result and discussion.

Index Terms- Malware; Packers; Disassembly; Windows API; Document Classwise frequency

1. INTRODUCTION

Any program having the malicious intent can be

classified as malware or computer infection program. It is a
collective term for any malicious software which performs
hidden unintended actions affects the integrity of the system
and cause damage, loss without the knowledge of user. The
definition of the malware given by McGraw and Morrisett [1]
as “any code added, changed, or removed from a software
system in order to intentionally cause harm or subvert the
intended function of system”. Filiol [2] defines malware as “a
simple or self-replicating program, which discreetly install
itself in a data processing system, without user’s knowledge or
consent, with a view to either endangering data confidentiality
or data integrity and system availability or making sure that
user to be framed for computer crime”. New malware variants
are discovered at an alarmingly high rate, some malware
families featuring tens of thousands of currently known
variants. The need for security is in fact a response to the
increasing number of attacks led against information systems.
Previous works and literature [3] [4] has shown that one single
technique alone cannot detect all types of malware. The two
most popular techniques for the malware detection are
commonly known as Signature-based and Anomaly-based.
Signature based techniques is well known for its high
detection rate for known malware whose signatures are
present in the database but has low detection or provide no
protection from zero day malware. Using the obfuscation
technique malware writers are creating new malware without
changing the essence of malware. These new malware are the
variant of known malware and easily bypass the detection.
Anomaly based detection techniques work on the concept of
normal and anomalous behavior of the program to decide the
maliciousness. The key advantage of anomaly based detection

technique is its ability to detect zero-day attack. The success of
these techniques depends on what features should be learnt in
training phase to discriminate malware and benign accurately.
In this work, we followed the static analysis approach to
analyze the PE executable based on their API calls. We used
static analysis tool IDA Pro to disassemble the binary file to
analyze and extract the Windows API.

This paper is organized as follows: the next section briefly
describes various types of malware. Section III describes the
contribution of the research work. Section IV highlights the
background of the work, and Section V elaborates the
implementation of automated framework used for the
extraction of API calls. The analysis and experimental results
are shown in Section VI followed by Section VII mentioning
the limitation and future work and finally conclusion in
Section VIII.

2.MALWARE TYPES

2.1 VIRUS

A computer virus is a program, a block of executable code,
which attaches itself to another program in order to reproduce
itself without the knowledge of User. It needs a host program
to cause harm. There are different types of computer viruses
for example boot sector viruses, parasitic viruses, polymorphic
viruses and metamorphic viruses.

2.2 Worm

 A computer worm does not require any host program and
replicates itself by executing its own code independent of any
other program. In general, virus attempt to spread through
programs/files on single computer while worm spread
throughout a network aiming to infect other connected
computers. Well-known examples of worms are Code Red,

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Slammer, Mydoom, Netsky. They usually exploit security
flaws in communicate applications or in network protocols.

2.2 Trojan Horse

A Trojan horse is a software program that appears to be
very useful. It performs the desirable function for the users as
stated but secretly performs some unauthorized actions like
stealing information or harm the integrity of the system. Once
installed in the victim’s computer, it secretly enables the
attacker to access all or part of victim’s computer resources.
Such Trojan horses can be classified as spyware as well. The
most popular Trojan horse programs are Back Orifice, Netbus
and Subseven.

2.3 Logic Bombs

A logic bomb is a non self-reproducing malware, which
install itself into the system and waits for some trigger
incident or external event, such as the arrival of a specific date
or time, or the creation or deletion of a specific data item such
as a file or a database entry, before performing a damaging or
an offensive function.

3 CONTRIBUTION OF THE PAPER

The main contributions of this paper are as follows:

 Building of malware dataset to perform experiments in
the absence of publicly available malware dataset.

 Analysis of the fully automated framework to extract
the API calls.

 Malware category-wise relevant API feature selection
using Document class-wise frequency and
classification.

We build the dataset by downloading the variety of
malware executables from VX Heavens source [14]. Even
though the malware executables were easily downloadable,
these cannot be analyzed straight forward because they were
packed and obfuscated. Identification and unpacking of
malware is the pre-requisite requirement for the research work.
Without proper unpacking and de-obfuscation, the statistical
analysis cannot be performed accurately. To deal with packing-
unpacking and de-obfuscation of these malware, we
implemented an automatic system for identification of packer
and unpacking the malware and keep the log record for
analysis. After unpacking the malware executables, we used
automatic framework to extract the API calls invoked by the
executables. Further we performed the DCFS based feature
selection measure to get the relevant API calls for each
malware category separately to increase the detection and
classification accuracy.

4 BACKGROUND

Static analysis and Dynamic analysis are two primary
approaches dominated in this area. Dynamic analyses refer to
techniques to profile the actions of the malware binary at
runtime [7]. Static analyses refer to techniques to disassemble
and analyse the logical structure, flow, and data content stored
within the binary itself. While both analysis techniques yield
important (and sometimes complementary) insight into the

capabilities and purpose of a malware binary, these techniques
also have their unique advantages and disadvantages.

Dynamic analysis provides only a partial “effects-oriented”
profile of the full potential of a given malware binary.
Dynamic analysis cannot reveal the effects of programming
logic that fails to execute during the runtime analysis. For
example, the malware binary may include unsatisfied trigger
conditions (e.g., logic revealed only when certain
environmental or temporal conditions are satisfied), or suicide
logic that can be triggered when process tracing is detected or
when other self-protection conditions are met.

Static program analysis offers the potential for a more
comprehensive assessment of the entire code and data of the
program. For example, by analysing the sequence of invoked
system calls and APIs, performing control flow analysis, and
tracking data segment references, it is possible to infer logical
code bombs, temporal triggers, and other malicious system
interactions. Features such as the presence of network
communication logic, registry and OS manipulations, and
object creations (e.g., files, processes, inter-process
communication) can be detected, whether or not these
capabilities are exercised at runtime.

 User-level malware programs require the invocation of
system calls to interact with the OS in order to perform
malicious actions. Therefore, analysing and extracting
malicious behaviours from these programs requires the
identification of system calls invoked within the code.
Although system calls in operating systems are predefined
mechanisms for trapping to the kernel and asking for services,
application programs may interact with other standard helper
modules provided by the OS that eventually trap into the
kernel. As an example, in Windows, the Win32 API is a
collection of services provided by helper DLLs that reside in
user space, while the native APIs are services provided by the
kernel. In such a design, the user-level API allows a higher-
level understanding of behaviour because most of the
semantic information is lost at the native level. Therefore, an
in-depth binary static analysis requires the identification of all
Windows API calls, and call sequences, made within the
program.

Literature has shown that API call can be explored to model
the program behavior. Analysis of API calls has been explored
for generation of birthmark on portable execution (PE) in [5].
The study on the related area [11] [12] clearly indicates the
scope of the API calls and their call sequence in order to detect
the program behavior. Other than API, assembly features and
hex-bytes features have been successfully tried out on N-gram
based statistical analysis for the malware detection but they are
not feasible and practical because of very large numbers of
features generated.

Understanding the issue of API resolution requires
understanding how Windows executables refer to APIs from
the various Windows libraries. The PE executable file format
includes an import section that determines what DLLs are
imported by the executable. The information contained in the
The unpacked malware were arranged in the respective

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

categories and fed to the disassembler for API call extraction.
For each category the extracted API’s were further refined
using DCFS measure. Fig. 1 shows the system architecture of
an automated process. The following are the steps followed by
the automated system. import table is used by the loader at
runtime to identify the addresses of the referred APIs so that
whenever an API is called, a jump to the API code is executed

5 IMPLEMENTATION OF FRAMEWORK

In this section we elaborate the complete framework for
API extraction. Most of the malware in the dataset were

compressed, packed and obfuscated. The freely available
unpackers like UPX, ASPack, FSG and UPack are used in the
automated system to unpack the executables before
disassembly and analysis.

 Unpack the malware.

 Extraction of API Calls using IDA Pro and export into

Mysql database using ida2sql python plugin.

 Selection of relevant API Calls.

Figure 1. Framework for API Call Extraction and Feature Selection for Malware Detection

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Step 1: Unpack the malware

Packers have become the favorite tool for malware writers
to create more variants of the existing malware with slight
change in malware code. This generates totally new malware
having the same malware logic with different signature to
avoid detection. Identification of right packer is core of this
step. Partial unpacked malware will not provide proper
information about the executable. We have implemented java
based program to automate the identification of the packer
used for malware and then unpack it for further analysis. This
is achieved by using the packer identification tool.

Step 2: Extraction of API Calls

The framework uses the most reliable disassembly tool for
static analysis, namely, Interactive Disassembler Pro (IDA Pro)
[8] since it can disassemble all types of non-executable and
executable files (such as ELF, EXE, PE, etc.). It automatically
recognizes API calls for various compilers and provide the
hooks to call custom defined plugins resulting in incredibly
powerful implementation with flexible levels of analysis and
control. IDA Pro loads the selected file into memory to analyse
the relevant portion of the program. IDA Pro generates the
IDA database files into a single IDB file (.idb) after
disassembling for analysing the information extracted from
the binary.

IDA Pro provides access to its internal resources via an

API that allows users to write plugins to be executed by IDA
Pro. We have used idapython [9] plugin which facilitates us to
run the disassembly module automatically for generating the
consolidated .idb database. The ida2sql plugins used to export
.idb database into MySQL database for better binary analysis.

ida2sql plugin generates 16 tables (Address comments,

Address reference, Basic blocks, callgraph,
control_flow_graph, data, expression_substitution, expression
_tree, functions, instructions, metainformation, modules,
operand_expressions, operand_strings, operand_tuple,
sections) [10] for each and every binary executable. Each of
them contains different information about the binary content.
For example Function table contains all the recognizable API
system calls and non-recognizable function names and the
length (start and the end location of each function).
Instructions table contains all the operation code (OP) and their
addresses and block addresses. We extracted the list of API
calls using Function table. Reference from the Microsoft
Developer Network (MSDN) [15] is used for matching and in
identifying the windows API’s. Java based program was
implemented to compare and match the API from MSDN and
the API calls generated in the database for the malware
sample set. To list all the API calls that are associated with
malcode are collected using machine opcodes such as Jump
and Call operations as well as the function type.

Step 3: Selection of relevant API Calls

 We have used the concepts of relevant API calls and Class-
wise document frequency for selecting the relevant API calls.

The aim is to identify a set of API calls that are common to the
set of malware and similarly another set of API calls that are
common to the benign executables. Let D be the training set
containing a set of malware programs V and a set of benign
programs B, i.e., D = B ∪ V. Pujari et al. [13] proposed a
feature extraction method based on n-grams and the feature
selection measure is a variant of document frequency. For n-

gram Ng, the document frequency (Ng, P) of Ng with

respect to a program P is 1 if Ng is present in P and 0,
otherwise. The Class-wise document frequency of Ng with
respect to a class C is

 CP
PNg),(.

 In other words, the Class-wise document frequency is the
number of executable programs in C that contain Ng. Fig. 2 is
a flow chart describing the selection of relevant API calls using
DCFS.

Figure 2. Flow Chart for selection of Relevant API calls

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

6 EXPERIMENTAL RESULTS

Malware dataset was built using the executables
downloaded from the VX-Heavens [14] website. The
malware dataset was prepared keeping variety of
malware. We collected 210 malware executables from [14]
and 300 benign executables from system32 folder in
Windows XP system. All the executables were in
Windows PE format. A statistical analysis of the Windows
API calling sequence reflects the behaviour of a particular
piece of code. In this research work, the relevant API calls
were extracted for each category of malware to capture
their behaviour. The extracted API’s were further refined
using document class-wise frequency measure to extract
relevant API calls. These relevant API calls were provided
to classifier as training to prepare the model to classify the
given program as malicious or benign. The experiments
were performed on various values of n-gram on SVM
classifier. Experiments results are shown in Table 1.

7 LIMITATIONS AND FUTURE WORK

In this work, we focused on the Windows API calls
and hence it will be limited to the detection of Windows
PE malware. Identification of packer is very important
step in this framework. The executables packed with
unknown packer cannot be analysed until the correct
packer is identified. Hybrid features can be tried to
increase the detection accuracy and reduce the false
positive.

8 CONCLUSION

A statistical analysis of Windows API calls in
malware reflects the behavior of a piece of code. In this
research project, the relevant APIs were extracted from
each malware category and further refined using DCFS
measure to classify the executable as malicious or benign.
The entire static detection process was fully automated for
classification system. The experimental results for
different sizes of n-grams are promising as a benchmark

for improvement of the framework with different set of
features thereby increasing the accuracy.

ACKNOWLEDGMENT

This research was conducted at the Centre for
Artificial Intelligence & Robotics (CAIR), Bangalore. The
authors would like to thank Director of CAIR and Division
Head of ISD, CAIR for their support throughout this project.
Special thanks to Dr. R. Anitha and Ms. Shina Sheen of PSG
College of Technology for their helpful comments and
suggestions.

REFERENCES

[1] Gary McGraw, Greg Morrisett, “Attacking Malicious
Code: A report to the Infosec Research Council”, IEEE
Software, Sep/Oct 2000.

[2] Eric Filiol, “Computer viruses: from theory to
applications”, First edition, IRIS International Series,
Springer Verlag France, ISBN 2-287-23939-1, June 2005.

[3] Vinod, P., Jaipur, R., Laxmi, V. and Gaur, M., “Survey on
Malware Detection Methods”, Hack. 2009, 74.

[4] Mihai Christodorescu and Somesh Jha, “Testing Malware
Detectors”, in Proceedings of ISSTA’04, July 11 - 14, 2004,
pages 33-44, Boston, MA USA, ACM Press.

[5] Sharif, M., Yegneswaran, V., Saidi, H., Porras, P. & Lee,
W., “Eureka: A framework for enabling static malware
analysis”, Computer Security - ESORICS, Lecture Notes in
Computer Science (LNCS), Springer, 2008, 5283/2008,
481-500.

[6] Wang, C.; Pang, J.; Zhao, R. & Liu, X., "Using API
Sequence and Bayes Algorithm to Detect Suspicious
Behavior", 2009 International Conference on
Communication Software and Networks, 2009, 544-548.

[7] Willems, C.: CWSandbox: Automatic Behaviour Analysis
of Malware (2006), http://www.cwsandbox.org/

[8] Hex-Rays SA, IDA Pro, http://www.hex-
rays.com/idapro/, 2008.

[9] Idapython, http:// code.google.com/p/idapython/, 2009.
[10] Zynamics BinNavi, http://www.zynamics.com/binnavi.
[11] Sami, A., Rahimi, H., Yadegari, B., & Hashemi, S.,

“Malware Detection Based on Mining API Calls”, ACM
Symposium on Applied Computing, April 2010.

[12] Alazab, M., Venkatraman, S. & Watters, P., “Malware
Detection Based on Structural and Behavioural Features of
API Calls”, 1st International Cyber Resilience Conference,
Edith Cowan University, Perth Western Australia, 23rd
August 2010.

[13] D. Krishna Sandeep Reddy, Arun K. Pujari, “ N-gram
analysis for computer virus detection”, Journal in
Computer Virology, 231-239, Volume 2, Number 1,
August 2006.

[14] VX Heavens, http://vx.netlux.org
[15] Windows API Functions, MSDN,

http://msdn.microsoft.com/enus/
 library/aa383749%28VS.85%29.aspx., January 2010.

[16] H. Witten and E. Frank., “Data Mining: Practical
machine learning tools and techniques”, Morgan
Kaufmann, 2nd edition, 2005.

[17] Fanglu Guo, Peter Ferrie, Tzi-cker Chiueh, “A Study of
the Packer Problem and Its Solutions”, LNCS, Springer-
Verlag Berlin Heidelberg, 2008.

[18] Wei Yan, Zheng Zhang, Nirwan Ansari, “Revealing
Packed Malware”, IEEE Computer Society, 2007.

Size of n-gram Accuracy

1

97.23 %

2 94.47%

3 93.96 %

4 91.70%

TABLE 1 EXPERIMENTAL RESULTS FOR VARIOUS SIZE OF N-GRAMS

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March -2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[19] M. Zubair Sha, S. Momina Tabish1, Fauzan Mirza,
Muddassar Farooq, “PE-Miner: Mining Structural
Information to Detect Malicious Executables in Realtime”,

In Proceedings of the 2009 Recent Advances in Intrusion
Detection (RAID) Symposium-Springer.

[20] Osterman Research White Paper, “The Global Malware
Problem: Complacency Can be Costly”,
http://www.ostermanresearch.com/downloads.htm#Sec
urity, June 2011.

[21] Abou-Assaleh,T.,Cercone,N.,Keselj,V., Sweidan,R,
“Detection of new malicious code using n-grams
signatures”, In: PST, pp. 193–196, 2004.

[22] O.Kostakis, J.Kinable, H.Mahmoudi, Kimmo Mustonen,
“Improved Call Graph Comparison Using Simulated
Annealing”, SAC 11, ACM, Taiwan, March 2011.

[23] H. Flake, “Structural comparison of executable objects”, in
Proceedings of the IEEE Conference on Detection of
Intrusions, Malware and Vulnerability Assessment
(DIMVA), 2004, pp.161 – 173.

