
International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 502
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

The formal Methods Approach to Software
Engineering

Moayad Almarzook

Abstract- The field of mathematics is intertwined with computer related fields. So it is natural to think of a mathematical solution to software related
issues. The problem is and always will be that it is very hard to implement a reliable software project. Here lays the need of formal method as an
approach to minimize the chances of an error especially in critical software systems. Not say that it is an easy task but the declining of software
dependency in a world, where the use of software is increasing rapidly. Urges for a better solutions.

——————————  ——————————

Introduction

Many tools, approaches, and techniques have been devised
for improving software reliability and dependability. Some
were more successful than others in specific domains. One
approach is called formal methods, in which a specification
notation with formal semantics, along with a deductive tool
for reasoning, is used to specify, design, analyze, and
implement a hardware or software system. This approach is
thought to be hard to apply and require a significant
mathematical knowledge. The more complex the system is,
the more specialization in mathematics-and engineering-
related areas are needed for more difficult formal methods
related tasks such as verification and refinement and
writing formal specification.
Three world-renowned experts in software engineering,
abstract interpretation, and verification of concurrent
systems Contributed in this article: Michael A. Jackson,
Patrick Cousot, and Byron Cook. Their contribution was
based on their speeches at the IEEE’s Fifth International
Conference on Software Engineering and Formal Methods,
which was held in 2007 in London. The goal of the
conference was to bring practitioners and researchers
together to exploit synergies and further the understanding
of specialization, abstraction, and verification techniques.

Formal Methods and Formal Design
In Michael A. Jackson speech he argues that computer
system are influencing all aspects of people’s lives. From
the moment they wake up until they fall asleep. Computers
are used increasingly in critical application that could cause
disasters if they fail to operate as expected. This raises the
question about the reliability of the software. This is a
major issue for software engineers because, software has
been exhibiting declining levels of dependability. Jackson
attributed Many reasons to this issue including:

1. The belief that anyone who can write a software
can write a good software.

2. Running a few representative test cases indicates
that the software is correct or adequate.

3. Not realizing that a good design is more important
than producing a lot of code.

4. Not realizing that making unnecessary,
uncontrolled, and careless changes. Can affect the
validity of the software.

Software intensive systems are intended to interact with
human behavior and use real-time information to provide
required functionality. These types of systems are a
challenge because of the non-formal nature of human
behavior. The software can be regarded as a formal system
for all but the most extremely critical systems the computer
behavior can be assumed to conform to the program
semantics. For a dependable system. There must be an
adequate formal model of the world, and the software must
be designed to reflect the assumption that the world
conforms to this model. The computer behaves as if the
world model is valid. Once the world deviates the model
fails. Fault-tolerant techniques can be implemented, but
they are not enough to eliminate all the problems.
The development of a formal model is an engineering task.
In which, establishing engineering branches, challenges are
met by experience accumulated in each particular product
class and captured in a normal design discipline. Jackson
uses the aeronautical engineer W. G. Vincenti’s explanation
of normal design: “The engineer knows at the outset how
the device in question works, what are its customary
features, and that, if properly designed along such lines, it
has a good likelihood of accomplishing the desired task.”
The deviations in a normal design are sufficiently
improbable, these deviations are implicitly handled by the
configuration and which must be considered in the
calculations and checks mandated by the normal design
discipline.
Software engineering and computer science have many
specializations; however, these specializations are not
enough to build dependable software intensive systems.
The development of more specializations is a must. They
have to be heavily focused on narrow classes of end
products and their subsystems. Dependency can only be
achieved by bringing together the contributions of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016 503
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

specialists in all the different aspects, parts, and dimensions
of the design task.
Patrick Cousot defines formal methods as a mathematical
techniques for specifying, developing, and verifying of
software and hardware systems. Establishing satisfaction of
a property by a formal model of the system behavior is
called semantics. The semantic domain is a set of all such
formal models of system behaviors. A property of the
system is a set of semantic models that satisfy this property.
The satisfaction of a specification by a system is called its
collecting semantics. The semantics and the specification of
a complex system are very difficult to define. That makes
the Formal verification methods very hard to put in
practice. Even when it is possible the proof cannot be
without costs.
Abstract Interpretation is a theory of sound approximation
of mathematical structures.
The abstraction idea is to consider a sound over
approximation of the collecting semantics, a sound under
approximation of the property to be proven, and to make
the correctness proof in the abstract. It formalizes the
intuition about abstraction, and allows the systematic
derivation of sound reasoning methods and effective
algorithms for approximating undecidable or highly
complex problems in a number of computer science fields.
Abstract Interpretation is currently use on complex
hardware and software computer systems security.
Verification by Static is a fully automatic analysis of a
computer system by directly inspecting the source or object
code describing the system with respect to the semantics of
the code, and it is proven by computing an abstraction of
the collecting semantics of the system. Few successful
examples are aiT (www.absint.com/ait), where they
computed an over approximation of the worst-case
execution time, and Astree (www.astree.ens.fr), where they
computed an over approximation of the collecting
semantics to prove the absence of runtime.
Byron cook said that various applications involve
concurrency, where parallel activities are in progress. This
could create unexpected complex interactions, making
verification a complex problem. Traditional methods of
specifying and automatically reasoning about computer
systems are not sufficient in this case. Specialized tools
would be required for verification; however, recent
advances addresses these issues.
Thread modularity is a common theme in those advances,
which refer to existing sequential-program proofs that can
be used to prove the correctness of concurrent programs if
appropriate abstractions can be found to represent the
other threads in a concurrent system. Heuristics must be
developed to deal with the difficulty of thread-modular
techniques, because the space of abstractions is so large that
finding the right one for a given program verification is

difficult. Also through the use of experimental evaluations,
these heuristics must be shown to work in the common
case.

Conclusion
Summing up, only through solid design principles that
software intensive system can achieve dependability, and
that in turn is achieved through the understanding of the
product and specialization of engineers. Abstract
interpretation can reduce the complexity of proving
properties correctness of complex software systems.
Verification techniques have seen some recent advances,
which made it possible to verify concurrent systems.
Formal methods has characterized the first 20 years of this
field making it an art. Today it is not restricted to few users
anymore. First transition of formal methods was a move
from specification only toward tool based semantics
analysis. The second transition was a move from proof
assistants to fully automatic analyses embedded in usual
development environment. This shift would enable
developers to use these techniques easily, making it an
everyday practice.

References

Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J., &
Margaria, T. (2008). Software engineering and formal
methods. Communication of ACM, 9(51), 59-59.

IJSER

http://www.ijser.org/

