
International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Startup Time Optimization Techniques for
Embedded Linux
PramodKumar Singh, Prof Swanili Karmore

Abstract— Embedded system performance and utilization has increased over years, these can be observed most obviously in the

electronic consumer market once a mobile phone are now replaced by smart phones and internet tablets, once a car radios are now

replaced by by In-Vehicle Infotainment Systems. More and more functionality is introduced into the once single-purpose system to utilize

the increasing computational power, driven by the system's main target of providing improved services to the user. That implies an even

faster growing complexity to be handled by the embedded systems and availability on demand. Operating system based on the Linux

kernel are used in most of these consumer electronic devices, the user of these devices except these devices to be available for use very

soon after being turned on. This leads to optimization of startup time for Linux. In this paper we represent various techniques available for

optimization of the startup time for Linux for various different scenarios ranging from consumer level device like set-top boxes, to real time

and mission critical system like industrial automation and medical instruments.

Index Terms— embedded, Linux, boot, optimization, kernel, system, embedded platform.

-- --

1 INTRODUCTION

inux, developed by Linus Torvalds was specifically targeted
to desktop PCs running an Intel 80x86 or compatible micro-
processor. Today Linux has been ported to many different

microprocessors and runs on all sorts of platforms, these devices
are not even general purpose computer systems and include things
such as network routers, heart monitors, and data collection units
for tracking different weather pattern sensors from isolated unat-
tended remote locations. It is these type of systems that have col-
lectively come to be labeled as “Embedded Linux”. Linux meets
the requirements of everyone in all fields such as embedded, real
time, personal computer in terms of functionality, scalability and
cost. Linux supports all these features because of its configurable
nature and hugely supported open source community of developer
all across the world. Linux meets the requirements of everyone in
all fields such as embedded, real time, personal computer in terms
of functionality, scalability and cost. Various mission critical sys-
tems such as an aircraft control system or an application platform
running on a communication node require system to be started up
in few seconds to a minute. To achieve the fast startup in these
system it is necessary to examine the boot process of the operating
system used which is Linux.

Optimizing the Linux Bootup process should not override

or change the existing functionality, nor the normal operation.

On optimization we extend the system to a level where it re-

duced the time of the booting process, but fail to satisfy nor-

mal operation then whole process will be lost. Boot optimiza-

tion should not affect the system functionality, but in turn help

system to enhance its booting process for faster system up-

grade.

2 EMBEDDED LINUX

Embedded system is defined to be an application-oriented

special computer system designed to perform one or few ded-

icated functions (e.g. consumer electronics, in -vehicle system,

industrial system)

Embedded Linux is defined to be an operating system

which is built around the Linux kernel and is designed to be

used in an embedded system

2.1 Embedded System and Desktop/Server system

Embedded System differ from the general purpose desk-

top/ Server system in applicability and hardware choices, be-

low are some of the characteristic that d ifferentiate and em-

bedded system from any other general purpose plat-

forms/ systems.

1. Limited hardware/ performance capabilities

2. Usually relatively static environment (target HW

know at design time) 

3. Large variety of d ifferent target hardware’s (e.g.

different processor architectures)

4. Restricted access to the system, users are generally

can’t install new software

2.2 Linux for embedded system

The open source Linux kernel based operating system has
dominated the computing world and have now shown the same
domination in the embedded system space, some of the advantage
of Linux systems are

1. Low cost/ free (open source)

2. High performance (consistent in time)

3. Security (one of the most secure OS)

4. Stability (generally runs until hardware fails)

5. Scalability (handles small and large systems)

6. Flexibility (easily customized and optimized)

7. Compatibility/ Portability

L

————————————————

 Pramodkumar Singh is currently pursuing masters degree program in
Embdded System and Computing in GHRCE, Nagpur, India, E-mail:
pramod73@gmail.com

 Prof Swapnili Karmore, Department of Computer Science & Engineering,
G.H.Raisoni College of Engineering,Nagpur, India E-mail: swap-
nili.karmore@raisoni.net

742

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 3, March-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Fig. 1. High level linux boot process

8. Maintainability (regular updates)

9. Multitasking (true multitasking)

10. Multiuser (true multiuser)

11. Machine independent software environment

12. Supports almost all programming languages and a

wide range of IDE’s

13. Excellent technical support (community)

The flexibility and other Linux advantage are very much

appreciated in the embedded system world , Linux kernel as

embedded system allows the developer to u tilize the vast

amount of knowledge and components already available to

embedded system world . Some of the advantages of using

Linux for embedded systems are as follow

1. Allows to re-use components and can be freely

duplicated on other devic-

es(flexibility/ compatibility/ Portability)

2. Allows to have fu ll control over the software part

of the system (e.g. complete source codes available;

debugging, changes, and optimizations easily pos-

sible)

3. Eliminates dependencies on third -party vendors

(open-source kernel/ components)

4. Reduces licensing and development tools costs,

possibly down to zero

5. Reduces development time (widely used and

known, fast and active community support, plenty

of ready-made components, large number of de-

velopment tools available)

6. Offers high-quality components, widely used on

millions of systems

7. Eases and speeds up testing of old and new fea-

tures

3 BOOT PROCESS

The boot time for an embedded system is of paramount im-

portance. To optimize the boot time of the Linu x, let’s under-

stand the process of booting a system running Linux operating

system, the Linux booting process consists of multiple stages

as shown in the figure below

3.1 Boot loader process

This process includes early hardware in itiation and interaction

and load the kernel from flash to RAM. The time take during

this process can be described as

1. Power/ Clock Stabilization  ------ usually negligible

but should be considered

2. Low Level CPU Initialization - ~ 100 ms ------ Boot-

loader (often multi-stage, ie secure boot)

3.2 Kernel Startup

This process does the following activities

1. Loading images (kernel, u -boot, rootfs, d tb) 

a. Usually from NOR or NAND Flash 

b. Compressed kernel

2. Subsystem (Driver) initialization 

3. Mounting a root file system

3.3 User space

The user space process covers

1. Init scripts

2. System processes

3. Applications

The user space process and configuration are very user and

applications dependent; the user space can have a d isplay

terminal or may not have a d isplay terminal. The best example

of the user space is the user interface of the Android operating

system which is working over the Linux kernel.

4 OPTIMIZATION PROCESS

Linux boot optimizations methods are very platform and ap-

plication dependent; the optimization need to consider the

whole system architecture for selecting the boot optimization

strategies e.g. 

1. What software update methods will be used (affect

features needed in boot loaders)

2. What are the essential functions of the device that

must be running first?

3. When are network features needed

4. The difference between the production and devel-

opment system images can also pose a d ifferent

optimization need e.g. during the development

more feature rich image might be needed and

based on the development and production need

the kernel configuration might be d ifferent (to ena-

ble easier debugging) for d ifferent version of the

images.

Any optimization on the Linux booting process would fall

into either of these 2 broad categories:

 4.1 Size

The size d ictates what would be kernel image size based on

the available hardware or application, the size optimization

process including

1. Reducing the size of binaries for each successive

component loaded.

2. Removing features that are not required to reduce

the size and complexity of the image.

743

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 3, March-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

Fig. 2. Optimization Process

4.2 Speed

The speed optimization process includes

1. Optimize for target processor

2. Use faster medium for loading primary, secondary

boot loaders and kernel.

3. Reduce number of tasks lead ing to the boot.

The size and speed optimization process is dependent on

the application need of the embedded system, if the system is

designed to be working as an unattended remote sensor for

weather collection then both the size and speed are of para-

mount the optimization process would require the identifica-

tion of usability and then target time requirem ent, based on

these criteria the optimization process for Size and Speed can

be u tilized .

 A generic optimization process for the embedded system is

depicted in the below diagram .

5 VARIOUS OPTIMIZATION TECHNIQUE

To achieve the optimal or fast startup time the Linux embed-

ded system need to be optimized based on the optimization

process mentioned in the above section, once the need and

process is identified , the optimization can be categorized and

done by below activities

5.1 Reducing kernel boot time

Kernel boot time can be reduced by performing some or all of

these activities

1. Disable IP auto config

2. Reducing the number of PTYs

3. Disable console output

4. Preset loops_per_jiffy

5. kernel decompression

6. Reduce the kernel size

7. Faster rebooting

8. Copy kernel and initramfs from flash to RAM us-

ing DMA

9. Async initcall

10. Deferred initcalls

5.2 System startup time and application speed

System startup speed is dependent on multiple factors apart

from the kernel, the filesystem, processor, IO and services, the

optimization for startup time can be achieved by u tilizing

some or all the following activities.

1. Starting system services

2. Prefetching Reading ahead

3. Execute In Place (XIP)

4. Processor acceleration instructions

5. Use faster filesystems

6. Speed up applications with tmpfs

7. Boot from a hibernate image

8. Reducing d isk footprint and RAM size of the Linux

kernel

9. Replacing initrd by initramfs

5.3 Application size and RAM usage

The application size can have a detrimental impact on the

whole embedded system, embedded system is generally

starved for RAM and other hardware because of power con-

sumption, size and other environmental constraints. The op-

timization of application size and RAM usage can be per-

formed based on some or all of the following activities

1. Static or dynamic linking

2. Library Optimizer

3. Using a lighter C library

4. Compressing filesystems

5. Restartable applications

6. Merging duplicate files

7. Compiler space optimizations

 5.4 Reducing power consumption

One of the major constraint of the embedded system is power

consumption, embedd ed systems are used in some environ-

ments which are not su itable for general purpose computing,

even human intervention are not possible (hazardous envi-

ronment, factory automations) in this type of environment the

embedded system sensors are supposed to work for longer

duration without any need to power and other interventions.

Power consumption optimization can be achieved by some or

all of the activities

1. Tickless kernel

2. Cpufreq

744

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 7, Issue 3, March-2016
ISSN 2229-5518

IJSER © 2016

http://www.ijser.org

3. Suspend hidden GUIs

4. Software suspend

6 CONCLUSION

Linux kernel is quite flexible and portable, even each applica-

tion of embedded system need specific optimization of the

Linux kernel based on the choice and availability of the em-

bedded system hardware.

 The startup time of the embedded Linux based are based

on multiple factors and the embedded Linux boot time are

1. Highly dependent on choices made in HW

2. Hardware architecture and system architecture

matter

3. Individual requirements vary based on the utility

and application need

The reduction in startup time varies based of factors affect-

ing d ifferent need and hardware of embedded system applica-

tion.

ACKNOWLEDGMENT

The authors wish to thank all the Prof of Embedded System

and Computing department of GHRCE, Nagpur, India for

there support and encourgament.

REFERENCES

[1] Heeseung Jo; Hwanju Kim; Jinkyu Jeong; Joonwon Lee; Seungryoul
Maeng; “Optimizing the startup time of embedded systems: a case study

of digital TV” , Consumer Electronics, IEEE Transaction on , Publication
year 2009 Volume: 55 , Issue : 4 page(s): 2242 -2247

[2] Kyung Ho Chung; Myung Sil Choi; Kwang Seon Ahn; Kyungpook Nat.
Univ., Daegu “A Study on the Packaging for Fast Boot-up Time in the

Embedded Linux” Embedded and Real-Time Computing Systems and
Applications, 2007, RTCSA 2007, 13th IEEE international conference,
Publication Year: 2007, Page(s) 89-94

[3] K. H. Chung, H. Y. Cha, K.S. Ahn, "A Study on the Effective File System

Packaging in the Embedded Linux Systems", Proceedings of the 2005
International conference on Embedded System and Applications, Las Vegas
USA, 2005, pp252-258

[4] Joe, Inwhee; Lee, Sang Cheol; Division of Computer Science &
Engineering, Hanyang University, Seoul, South Korea “Bootup time

improvement for embedded Linux using snapshot images created on

boot time” Next Generation Information Technology(ICNIT), 2011 The
2nd international Connference, Publication Year : 2011 Page(s) 193 – 196

[5] Kumar, L.; Kushwaha, R.; Prakash, R; Embedded Syst., Centre for Dev. of
Adv. Comput., Noida, India “Design & Development of Small Linux

Operating System for Browser Based Digital Set Top Box”

Computational Intelligence, Communication Systems and Networks, 2009
CICSYN 09, First intenational Conference, Publication year: 2009, page(s):
277 – 281

[6] S. Dey and R. Dasgupta, "Fast Boot User Experience Using Adaptive

Storage Partitioning", Future Computing, Service Computation, Cognitive,
Adaptive, Content, Patterns, 2009. COMPUTATIONWORLD '09.
Computation World, pp. 113-118, 2009

[7] Seltzer, M.I, "Transaction support in a Log-Structured file system, Data

Engineering", Proceedings Ninth International Conference, IEEE, Vienna
Austria, 1993, pp503-510

[8] M. Resenblum, J. Ousterhout, "The design and Implementation of a Log-

Structured File System", ACM Trans On Computer Systems, ACM Press,
1992, Vol.10 No1, pp26-52

[9] R. Bryant, R. Forester, J. Hawkes, "Filesystem Performance and

Scalability in Linux 2.4.17", 2002 USENIX Annual Technical Conference,
USENIX Association, Berkeley USA, 2002, pp259-274

[10] M. K. McKusick, W. N. Joy, S. J. Leffler, R.S. Fabry, "A Fast File System

for UNIX”;, ACM Transactions on Computer Systems, ACM Press, 1984,
Vol.2 No.3, pp181-197

[11] D. Roselli, J. R. Lorch, and T. E. Anderson, "A Comparison of File System

Workloads" Proceedings of USENIX Annual 2000 Technical Conference,
San Diego USA, 2000, pp41-54

[12] C. W. Rhodes, "Interference to DTV Reception due to Non-Linearity of

Receiver Front-Ends", IEEE Transactions on Consumer Electronics, vol.
54, no. 1, 2008

[13] H. Jo , H. Kim , H.-G. Roh and J. Lee, "Improving the Startup Time of

Digital TV", IEEE Transactions on Consumer Electronics, vol. 52, no. 2,
pp. 485-493, 2009

[14] H. Kaminaga, "Improving Linux Startup Time Using Software Resume",
Proceedings of the Linux Symposium, 2006

[15] C. Park , K. Kim , Y. Jang and K. Hyun, "Linux Bootup Time Reduction
for Digital Still Camera",Proceedings of the Linux Symposium, 2006

[16] V. Wool, "Optimizing boot time for Embedded Systems", Proceedings of
Free and Open Source Software Developerâ�™s European Meeting
(FOSDEM), 2006

[17] L. Xing , J. Ma , X.-H. Sun and Y. Li, "Dual-Mode Transmission

Networks for DTV", IEEE Transactions on Consumer Electronics, vol. 54,
no. 2, 2008

745

IJSER

http://www.ijser.org/

