Scientometric Analysis of Indian Engineering Literature during 1999-2013

Mr. Siddanagouda C. Hosamani^{1,} Dr. Vitthal T. Bagalkoti²

ABSTRACT- The present study deals with the scientometric analysis of Indian engineering research output as reflected in Web of Science (WOS) database for the period 1999 to 2013 for identifying the research output in the field of engineering literature. It also provides a comparative evaluation and performance of different types of scientometric indicators, such as number of publications, number of citations, relative growth, doubling time, activity index and collaboration from India. The Indian engineering research has increased exponentially over the last decade.

KEYWORDS- Scientometrics, Scientometric Analysis, Engineering, Web of Science, Relative Growth Rate, Doubling Time and Activity Index.

----- 🔶 ------

Email: sidduch001@gmail.com

¹ MLISc.. Student, Department of Library and Information Science, Karnatak University, Dharwad-580 003,

² Project Fellow, UGC/SAP/DRS-I, Department of Library and Information Science, Karnatak University, Dharwad-580 003, Email: vitthallis@gmail.com

1 INTRODUCTION

The term Engineering derived from Latin word 'ingenium', meaning 'cleverness' and 'ingeniare', meaning 'to contrive, devise'. Engineering is the application of scientific, economic, social, and practical knowledge in order to design, build, maintain, and improve structures, machines, devices, systems, materials and processes using the engineering design process. Engineering is the broad discipline, encompasses the range of more specialized fields with a more specific emphasis on particular areas of technology and types of application.

Scientometrics is a discipline which analyses scientific publications to explore the structure and growth of science. The bibliometric / scientometric / informetric techniques used to analyze various quantitative or qualitative aspects of a publication. It is a scientific field that studies the evolution of science through some quantitative measures of scientific information, as the number of scientific articles published in a given period of time, their citation impact, etc. The history of science and technology, philosophy of science and sociology of scientific knowledge are the related fields of Scientometrics.

The assessment of research performance using scientometric technique is a valuable method for the identification and evaluation of the strength and weakness in scientific achievements. The generation of new scientific and technical knowledge/information has been accelerating over the past several years. The growth in literature has become a major concern for the scientists, scholars, and library professional as they try to keep themselves abreast with new advances in their subject, and information professionals try to organize this knowledge. How the growth, origin and language of literature reflect in various national level activities in R & D is a matter of great concern to the managers of the scientific activities in government industry and in academic community.

The study analyses India's performance in the field of engineering, using publications data and different quantitative and qualitative measures. Its focuses on India's publication share in world, growth rate, quality of citation, international collaborative publications, its publication share and distribution in sub-fields using 15 years data from the Web of Science database.

2 METHODS AND MATERIALS

Data for the world and India since 1999-2013 has been collected, by using **Web of Science** database. For analyzing the data, Excel and SPSS- statistical software has been used. The Relative Growth Rate (RGR), Doubling Time (Dt) and Activity Index (AI) has been calculated.

2.1 Relative Growth Rate: is the growth rate relative to the size of population. It is also called as the exponential growth rate or continuous growth rate with reference to scientific literature publication time,

Relative Growth Rate (GR) is the increase in the number of publications per unit time. The formula for calculating the mean R

$$R = W_2 - W_1/T_2 - T_1$$

Where

R = mean relative growth rate over the specific period of intervals;

 $W_1 = Log W_1$ (natural log of initial number of publication);

 $W_2 = Log W_2$ (natural log of final number of publication);

 $T_2 - T_1 =$ the unit difference between the initial and final time

This formula even holds good for the calculation of RGR Subject wise

2.2 Doubling Time (Dt) **Doubling Time (Dt):** The doubling time is the given period required for quantity to double in size or value. This can be calculated by using the formula.

Doubling time $D_t = 0.693/R$

Here, Dt (P) = average doubling time of publications

2.3 Activity Index (AI): Activity index characterizes the relative research efforts of a country in a given subject field and takes into consideration the effect of the size of the country as well as the size of the field. Activity Index (AI) for India has been calculated for different years to see how India's performance gradually changed during different years. For this the author has used the Activity Index for fifteen years period.

The Activity Index (AI) characterizes the relative research effort of a country in given subjects. It is defined as:

given field's share in the country' s publication output

AI=

given field's share in the world's publication output

Mathematically

Where:

nij	-Indian output of papers in particular
field	
nio	-Total Indian output on all subjects
noj	-World output of papers in particular
field	
noo	-Total World output on all subjects

3 RESULTS AND DISCUSSION

3.1 Growth of Publications of World and India in Engineering

Table 1 depicts the engineering research output of World and India, Average Citations per publications and global publications share of India. India has produced 48,570 publications, and received 4,44,223 citations during the period 1999-2013, Average Citations per Publication is 9.15. As per the web of science data, cumulative publications growth, the cumulative engineering publications output of India had increased from 8,999 publications during 1999-2003 to 15,096 publications during 2004-2007, and 24,475 publications during 2008-2013. India's publications are gradually increased year by year. The global publications share of India during 1999-2013 was 3.72 %, which has increased from 2.52 in 1999 to 5.08 in 2013. This analysis proves that there is an increasing trend in the Indian engineering research.

The global research output in engineering research has increased from 3,29,412 in 1999 to 5,38,447 in 2013. The trend shows a steady and significant increase in the publications. In the same manner, the Indian research output in engineering too has increased from 8,999 in 1997 to 24,475 by 2011. The trend shows a higher steepness, indicating a faster increase in research output vis-à-vis global research output (Table 1).

Table 1 Growth of Publications of World and India in
Engineering

	World	India	% TP	
Year	(TP)	(TP)	Share	ACPP
1999	62083	1566	2.52	14.90
2000	63118	1658	2.63	16.68
2001	66617	1920	2.88	14.59
2002	66393	1750	2.64	1.33
2003	71201	2105	2.96	16.32
2004	77568	2360	3.04	16.34
2005	85014	2560	3.01	15.69
2006	88442	2770	3.13	16.50
2007	90240	3396	3.76	13.80
2008	96558	4010	4.15	11.10
2009	105662	4608	4.36	9.39
2010	103183	4688	4.54	6.51
2011	107099	4676	4.37	4.94
2012	107643	4672	4.34	2.62
2013	114860	5831	5.08	0.62
1999-2003	329412	8999	2.73	12.85
2004-2008	437822	15096	3.45	14.29
2009-2013	538447	24475	4.55	4.61
1999-2013	1305681	48570	3.72	9.15

Note: TP= Total Publications, ACPP= Average Citations per Publications

3.2 Relative Growth Rate and Doubling time

The total output of world and India has been shown in Table 2 (fifteen year) along with the growth rate and doubling time. The table shows that the relative growth rate of world output decreases gradually from 0.701 to 0.092 in fifteen year's period (1999-2013). The doubling time (Dt) correspondingly increases from 0.988 to 7.526 in this period. The mean growth rate & doubling time for the world is 0.203 and 4.129 respectively.

Indian output, as shown in Table 3, also decreases gradually from 0.722 to 0.128 during fifteen years period (1999-2013). This growth may be due to the establishment of major scientific institutions which resulted into more scientific research. Correspondingly, the doubling time increases from 0.960 to 5.419 in the same period. The mean growth rate and doubling time for Indian output is 0.229 and 3.360.

But the year-wise analysis of growth rate and doubling time for world and India indicates a different finding. The average growth rate of world and India is 0.218 and 0.245 respectively. Correspondingly, the doubling time of world is 4.424 and India is 3.600 respectively (Fig.1 & 2).

	World		Dt.	India	RGR	Dt.(P)
Year	ТР	RGR	(P)	ТР		
1999	62083			1566		
2000	63118	0.701	0.988	1658	0.722	0.960
2001	66617	0.427	1.624	1920	0.467	1.483
2002	66393	0.297	2.332	1750	0.293	2.367
2003	71201	0.244	2.846	2105	0.266	2.601
2004	77568	0.211	3.277	2360	0.233	2.976
2005	85014	0.190	3.653	2560	0.203	3.410
2006	88442	0.165	4.192	2770	0.181	3.818
2007	90240	0.145	4.796	3396	0.185	3.741
2008	96558	0.135	5.152	4010	0.182	3.807
2009	105662	0.129	5.371	4608	0.175	3.960
2010	103183	0.112	6.203	4688	0.151	4.581
2011	107099	0.104	6.656	4676	0.131	5.288
2012	107643	0.095	7.314	4672	0.116	5.986
2013	114860	0.092	7.526	5831	0.128	5.419
Mean						
Value		0.203	4.129		0.229	3.360

Table 2 World v/s India Relative Growth Rate (RGR) and Doubling Time (Dt.)

Note: RGR= Relative Growth Rate, Dt. (P) =

Doubling Time

Figure 1 World v/s India Relative Growth Rate (RGR)

Figure 2 World v/s India Doubling Time (Dt.)

3.3 Organizational / Institution productivity in the field of engineering literature

Table 3 reveals the ranking list of top 20 highly productive Research Institutions in India based on their highest publications, citations, average citations per publication and h-index. According to the web of science database Indian Institute of Technology (IIT), Delhi contributed the highest publications to the field of engineering, i.e. 18824 publications with 38.61%, followed by Council of Scientific Industrial Research (CSIR), Delhi, with 7407 publications (15.19%), Indian Institute of Technology (IIT), Kharagpur with 4256 publications (8.73%), and Indian Institute of Science (IISC), Bangalore with 3565 publications. In terms of citations received the Council of Scientific Industrial Research (CSIR), Delhi has received the highest citations i.e. 73920 with 9.98 average citations per paper (ACP), followed by Indian Institute of Technology (IIT), Kharagpur with 34488 and it's average citations per publication is 8.1, and Indian Institute of Science (IISC), Bangalore with 34308 citations with 9.62 average citations per publication.

Rank by	Rank by		Research / Academic Institution	TP	Citations	ACP	H-Index
ТР	ACP	Rank by TC					
1	NA	NA	Indian Institute of Technology (IIT), Delhi	18824	NA	NA	NA
2	2	1	Council of Scientific Industrial Research (CSIR), Delhi	7407	73920	9.98	82
3	11	2	Indian Institute of Technology (IIT), Kharagpur	4256	34488	8.1	57
4	3	3	Indian Institute of Science (IISC), Bangalore	3565	34308	9.62	64
5	12	5	Indian Institute of Technology (IIT), Madras	3533	27348	7.74	52
6	4	4	Indian Institute of Technology (IIT), Chennai	2896	27612	9.53	59
7	9	6	Indian Institute of Technology (IIT), Bombay	2743	23888	8.71	51
8	5	7	Indian Institute of Technology (IIT), Kanpur	2541	23786	9.36	51
9	19	12	National Institute of Technology, Rourkela	2139	11167	5.22	35
10	7	8	Indian Institute of Technology (IIT), Roorkee	1830	16399	8.96	52
11	16	11	Bhabha Atomic Research Center (BARC), Mumbai	1632	12029	7.37	40
12	8	9	Annamalai University, Chidambaram	1570	13900	8.85	50
13	6	10	Anna University, Chennai	1477	13325	9.02	48
14	17	13	Jadavpur University, Jadavpur	1472	10697	7.27	39
15	13	15	Banaras Hindu University, Varanasi	1151	8789	7.64	39
16	18	16	Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu	931	6224	6.69	33
17	15	19	National Metallurgical Laboratory India, Jamshedpur Jharkhand	697	5256	7.54	31
18	14	18	Defence Metallurgical Research Laboratory (DMRL), Hyderabad	690	5264	7.63	30
19	10	17	Aligarh Muslim University, Aligarh, Uttar Pradesh	663	5407	8.16	33
20	1	14	National Chemistry Laboratory, PUNE	636	9864	15.51	45

Table 3 Organizational / Institution productivity in the field of Engineering literature

Note: NA- Not Available (since Indian Institute of Technology TC, ACP, H-Index data was not available, ranking by TC, ACP was done excluding IIT

3.4 Highly Productive Scientists in India

The table 4 shows the top highly productive scientists based on their highest publications, irrespective of their disciplines during 1999-2013 appeared in Web of Science. These authors have together published 6774 publications with 13.95% and received 49034 citations with an average citation per publication of 7.28. Kumar, A. is the highly productive author, he contributed 747 publications and received 4863 citations, and average citation per publication is 6.51 Kumar, S. contributed 701 publications and received 4836 citations with 6.9 average citations per publication, Kumar, R. contributed 510 publications and received 3823 citations with 7.5 average citations per publication. Das, S. contributed 408 publications and received 2568 citations.

Rank	Rank	Rank	Author	TP	TC	ACP	
by TP	by TC	by ACP					H-Index
1	1	14	Kumar, A.	747	4863	6.51	29
2	2	10	Kumar, S.	701	4836	6.9	29
3	3	9	Kumar, R.	510	3823	7.5	28
4	6	16	Das, S.	408	2568	6.29	23
5	4	2	Singh, B.	354	3786	10.69	26
6	10	17	Kumar, P.	330	1990	6.03	20
7	15	18	Kumar, V.	301	1770	5.88	20
8	18	20	Ghosh, S.	300	1528	5.09	16
9	13	15	Singh, R.	294	1886	6.41	19
10	11	12	Singh, A. K.	292	1986	6.8	20
11	12	11	Singh, S.	284	1933	6.81	22
12	7	6	Chakraborty, S.	258	2123	8.23	22
13	5	1	Das, S.K.	251	3090	12.31	22
14	14	8	Roy, S.	234	1806	7.72	21
15	8	4	Ghosh, A.	227	2097	9.24	23
16	20	21	Singh, S.K.	223	1128	5.06	15
17	9	3	Banerjee, S.	220	2051	9.32	23
17	19	13	Gupta, A.	220	1476	6.71	19
18	17	7	Sharma, A.	210	1703	8.11	19
19	16	5	Kumar, M.	208	1766	8.49	21
20	21	19	Gupta, M.	202	1095	5.42	13

Table 4 Highly Productive Scientists in India

Note: TP=Total Publications, TC= Total Citations, ACP=Average Citations per Publication

3.5 International collaboration

Collaborative research has become a well established feature in the field of Engineering. It is observed that there is a consistently increasing trend towards collaboration among various branches of engineering which leads to collaborative authorship in literature.

Table 5 depicts the international collaborative papers of India with top with 20 countries during 1999-2013. The share of International collaborative publications in the Indian Engineering research output was 23.84% during 1999-2013. The largest number of collaborative publications (3356) of India in engineering research was with United States with 6.98% share, followed by Germany 2.23% share, South Korea 2.03% share, England 1.55% share, Japan 1.52% share, Canada 1.30% share, Australia 1.09% share, France 1.07% share, Singapore 1.01% share. Many countries are contributed with below 1% share with India in engineering research during 1999-2013 (Table-4).

Rank by collaborative papers	Country	Total Publications (TP)	Total Citations (TC)	Average Citations per Publication (ACP)	H-Index					
1	USA	3356	37582	11.2	73					
2	Germany	1073	12005	11.19	44					
3	South Korea	976	7305	7.48	33					
4	England	746	5820	7.8	32					
5	Japan	729	7700	10.56	39					
6	Canada	625	6252	10	34					
7	Australia	523	4848	9.27	29					
8	France	516	5927	11.49	40					
9	Singapore	486	4592	9.45	34					
10	Malaysia	427	2949	6.91	25					
11	Peoples r china	426	3797	8.91	30					
12	Taiwan	246	2411	9.8	25					
13	Italy	242	2409	9.95	21					
14	Netherlands	196	2412	12.31	25					
15	Sweden	186	1506	8.1	20					

16	Saudi Arabia	179	1107	6.18	17
17	South Africa	145	897	6.19	14
18	Switzerland	131	1363	10.4	19
19	Iran	126	961	7.63	16
19	Spain	126	1135	9.01	15
20	Portugal	119	1365	11.47	22

3.6 Major Journals Preferred by scientists of Indian Engineering literature

Periodicals play a very vital role in scientific communication and serve as a repository of information, knowledge and media for communication from mind to mind. Table 6 reveals that the list of top twenty productive journals preferred the scientists of India in the field of engineering research. These ranked journals are accounting for 34.085 % of total output. Out of the 20 journals, 07 are basically from India, 09 from Netherlands, 02 from USA, 01 from England and Germany.

Journal of Alloys and Compounds ranked first in terms of publications i.e. 1816 publications and followed by Journal of Scientific Industrial Research which has contributed 1415 publications, Industrial Engineering Chemistry Research ranked third with 1303 publications, Materials Science and Engineering A Structural Materials Properties Microstructure and Processing ranked fourth in terms of publications. Similarly, Journal of Hazardous Materials fifteenth with 1074 publications.

With regard to average citations per papers (ACP), Journal of Hazardous Materials has got top position with 25.32 ACP and received 27199 citations, followed by Process Biochemistry 22.57 ACP and received 10857 citations, Chemical Engineering Journal 14.12 ACP and received 7935 citations, Journal of Materials Processing Technology 13.59 ACP and received 7285 citations and International Journal of Heat and Mass Transfer 11.76 ACP and received 7011 citations.

Rank	Rank	Source /Journal	Country	TP	TC	ACP
Dy IF	Dy ACP					
1	9	Journal of Alloys and Compounds	Netherlands	1816	14988	8.25
2	14	Journal of Scientific Industrial Research	India	1415	3767	2.66
3	8	Industrial Engineering Chemistry Research	Netherlands	1303	12785	9.81
4	6	Materials Science and Engineering A Structural Materials	Netherlands	1178	13543	11.5
		Properties Microstructure and Processing				
5	1	Journal of Hazardous Materials	Netherlands	1074	27199	25.32
6	15	Indian Journal of Chemical Technology	India	1040	2616	2.52
7	18	Transactions of The Indian Institute Of Metals	India	995	913	0.92
8	10	International Journal of Advanced Manufacturing Technology	England	792	5214	6.58
9	17	Indian Journal of Engineering and Materials Sciences	India	726	1190	1.64
10	20	IETE Journal of Research	India	655	344	0.53
11	16	Microwave and Optical Technology Letters	USA	647	1511	2.34
12	5	International Journal of Heat and Mass Transfer	Netherlands	596	7011	11.76
13	12	Journal of Materials Science Materials in Electronics	Germany	592	2392	4.04
14	11	Materials and Manufacturing Processes	Netherlands	564	2663	4.72
15	3	Chemical Engineering Journal	Netherlands	562	7935	14.12
16	19	IETE Technical Review	India	561	351	0.63
17	4	Journal of Materials Processing Technology	Netherlands	536	7285	13.59
18	13	Sadhana Academy Proceedings in Engineering Sciences	India	521	1877	3.6
19	7	Journal of Chemical And Engineering Data	USA	501	4973	9.93
20	2	Process Biochemistry	Netherlands	481	10857	22.57

Table 6 Major Journals Preferred by scientists of Indian Engineering literature

3.7 Subject-wise productivity in India

Table 6 and figure 3 indicate the subject-wise productivity of India in engineering research. General Internal Medicine, Materials Science, Metallurgy Metallurgical Engineering, Chemistry, Physics, Mechanics, Environmental Sciences Ecology, Computer Science, Telecommunications, Water Resources, Thermodynamics, were considered on the basis of the total number of publications. During 1999-2013 Materials Science has got the first position with 12329 (4.50%) publications, followed by Metallurgy Metallurgical Engineering with 8715 (4.14%) publications, Chemistry with 6668 (4.31%) publications, Physics with 3619 (2.64%) publications, Mechanics with 3363 (4.30%) publications, Environmental Sciences Ecology with 3202 (3.31%) publications, Computer Science with 3188 (2.36%) publications and Telecommunications with 2812 (2.63%) publications. Similarly the table 8 and figure 4 shows the subject wise productivity of world engineering literature.

Year	Materials Science	Metallurgy Metallurgical	Chemistry	Physics	Mechanics	Environmental Sciences	Computer Science	Telecommunications	Water Resources	Thermodynamics	Total
		Engineering				Ecology					
1999	360	326	256	76	99	66	100	165	71	47	1566
2000	428	387	205	91	97	55	108	145	89	53	1658
2001	516	444	286	118	101	77	94	138	89	57	1920
2002	461	329	270	113	114	72	112	127	73	79	1750
2003	557	433	296	129	127	106	124	167	102	64	2105
2004	606	464	398	139	142	104	164	160	100	83	2360
2005	682	521	346	169	185	125	141	165	117	109	2560
2006	702	474	345	198	192	205	185	195	158	116	2770
2007	928	609	394	213	226	263	205	240	155	163	3396
2008	1072	731	501	280	278	306	230	226	197	189	4010
2009	1219	797	675	274	319	405	269	193	233	224	4608
2010	1074	856	691	411	336	340	306	181	270	223	4688
2011	1127	797	631	382	305	370	371	210	279	204	4676
2012	1089	692	603	369	376	340	386	231	302	284	4672
2013	1508	855	771	657	466	368	393	269	256	288	5831
Total	12329	8715	6668	3619	3363	3202	3188	2812	2491	2183	48570

Table 7 Subject wise productivity in India

Table 8 Subject wise productivity in World

Year	Materials	Metallurgy	Chemistry	Physics	Mechanics		Computer	Telecomm	Water	Thermodynamics	Total
	Science	Metallurgical				Environmental	Science	-unications	Resources		
		Engineering				Sciences Ecology					
1999	12239	10178	7529	7916	3162	4162	6242	5405	3037	2213	62083
2000	12606	10834	7244	6705	3568	4405	6216	5478	3495	2567	63118
2001	13515	11325	8110	7751	3831	4445	6190	5469	3532	2449	66617
2002	14154	11102	7836	7357	3809	4365	6515	5029	3249	2977	66393
2003	14695	11638	8331	8404	4228	4794	6987	6037	3 397	2690	71201
2004	17368	13305	9367	8222	4501	4892	7101	6157	3585	3070	77568
2005	18616	14874	9636	9340	4609	5493	7892	6727	4334	3493	85014
2006	19609	14702	9971	9402	5267	6111	8811	7194	4016	3359	88442
2007	19175	14211	10625	9701	5523	6663	8531	7764	4177	3870	90240
2008	20787	16027	11440	9382	5747	7174	9794	7902	4940	3365	96558
2009	22249	17387	12731	9801	5995	8854	10908	8512	5003	4222	105662
2010	21133	16400	12935	9674	6248	8369	11020	8238	5234	3932	103183
2011	21580	16232	12850	10598	6418	8730	12403	8734	5057	4497	107099
2012	21216	15479	12277	10674	7130	8752	12867	9143	5626	4479	107643
2013	24457	16408	13533	11716	8095	9407	13453	8995	3009	5787	114860

Total	273399	210102	154415	136643	78131	96616	134930	106784	61691	52970	1305681

1197

IJSER © 2014 http://www.ijser.org

3.8 Activity Index

Activity index characterizes the relative research efforts of a country in a given subject field and takes into consideration the effect of the size of the country as well as the size of the field. Activity Index (AI) for India has been calculated for different years to see how India's performance gradually changed during different years. For this the author has used the Activity Index. The Activity Index is used for Indian engineering research output in Table 9. The

table reveals the highest AI in various subject categories as follows: Materials Science (132.74) in 2001, Metallurgy Metallurgical Engineering (136.03) in 2001, Chemistry (139.65) in 2004, Physics (110.46) in 20013, Mechanics (133.30) in 2005, Environmental Sciences Ecology (104.90) in 2009, Computer Science (75.91) in 2004, Telecommunications (121.02) in 1999, Water Resources (167.59) in 1013, and Thermodynamics (135.24) in 2008. It is observed from the data that it indicates India's research efforts in these subjects correspond to the world's average.

Year	Materials Science	Metallurgy Metallurgical	Chemistry	Physics	Mechanics	Environmental	Computer Science	Telecommunications	Water Resources	Thermodynamics
1000	440.04	Engineering	101.00	00.00	404.40	Sciences Ecology	00.54	404.00	00.00	04.00
1999	116.61	126.98	134.80	38.06	124.12	62.87	63.51	121.02	92.68	84.20
2000	129.25	135.98	107.73	51.67	103.49	47.53	66.14	100.77	96.94	78.60
2001	132.47	136.03	122.36	52.82	91.47	60.10	52.69	87.55	87.43	80.76
2002	123.57	112.43	130.72	58.27	113.55	62.58	65.22	95.81	85.24	100.68
2003	128.21	125.85	120.18	51.92	101.60	74.79	60.03	93.57	101.56	80.48
2004	114.68	114.62	139.65	55.57	103.69	69.87	75.91	85.41	91.68	88.86
2005	121.66	116.32	119.24	60.09	133.30	75.57	59.33	81.45	89.65	103.63
2006	114.30	102.94	110.47	67.24	116.39	107.11	67.04	86.55	125.62	110.26
2007	128.60	113.87	98.54	58.34	108.73	104.89	63.85	82.14	98.60	111.92
2008	124.18	109.83	105.45	71.86	116.48	102.71	56.55	68.87	96.02	135.24
2009	125.63	105.11	121.58	64.10	122.01	104.90	56.55	51.99	106.79	121.66
2010	111.86	114.88	117.58	93.51	118.36	89.42	61.12	48.36	113.54	124.83
2011	119.61	112.46	112.47	82.56	108.85	97.07	68.51	55.07	126.36	103.90
2012	118.26	103.00	113.16	79.65	121.50	89.51	69.12	58.21	123.68	146.09
2013	121.46	102.64	112.22	110.46	113.40	77.06	57.54	58.91	167.59	98.03
Average	122.02	115.53	117.74	66.41	113.13	81.73	62.87	78.38	106.89	104.61
AI										

3.9 Highly Cited Papers from India in Engineering

The table 10 shows the highly cited papers from India in engineering research during 1999 – 2013. Citations received by these top 20 cited papers accumulated to 11,409 (2.57%) of all citations. Most of the papers are having multiple authors (Three or more authors), only three papers are having single author. Six most cited papers are single country papers and originated from the United States, rest of the most cited papers are originated from the Canada. The most cited papers were published in two different journals.

The top cited paper was 'Pyrolysis of wood/biomass for bio-oil: A critical review' authored by Mohan, Dinesh; Pittman, Charles U., Jr.; Steele, Philip H. and published in *Energy & Fuels* (United States) in 2006 and this paper received 1076 citations, followed by 'A review of chitin and chitosan applications' published by Kumar, MNVR and published in *Reactive & Functional*

Polymers (Netherlands) in 2000 and this paper received 1008 citations, 860 the paper 'An efficient constraint handling method for genetic algorithms' got the third rank and it is published by Deb, K and published in *Computer Methods in Applied Mechanics and Engineering* (Netherlands) in 2000, next to these papers the paper 'Overview No.144 - Mechanical behavior of amorphous alloys' has received 841 citations published by Schuh, Christopher A.; Hufnagel, Todd C.; Ramamurty, Upadrasta published in *Acta Materialia* (United Kingdom) in 2007 and 'Arsenic removal from water/wastewater using adsorbents - A critical review' paper received 681 citations published by Mohan, Dinesh; Pittman, Charles U., Jr. published in *Journal of Hazardous Materials* (Netherlands) in 2007. This shows that more research activities are being carried on in newly developing fields.

SI. No.	No. of Citations	Tittle of the paper	Authors	Source	Year of publication
1	1076	Pyrolysis of wood/biomass for bio-oil: A critical review	Mohan, Dinesh; Pittman, Charles U., Jr.; Steele, Philip H.	Energy & Fuels	2006
2	1008	A review of chitin and chitosan applications	Kumar, MNVR	Reactive & Functional Polymers	2000
3	860	An efficient constraint handling method for genetic algorithms	Deb, K	Computer Methods in Applied Mechanics and Engineering	2000
4	841	Overview No.144 - Mechanical behavior of amorphous alloys	Schuh, Christopher A.; Hufnagel, Todd C.; Ramamurty, Upadrasta	Acta Materialia	2007
5	681	Arsenic removal from water/wastewater using adsorbents - A critical review	Mohan, Dinesh; Pittman, Charles U., Jr.	Journal of Hazardous Materials	2007
6	577	Biofuels applications as fuels for internal combustion engines	Agarwal, Avinash Kumar	Progress in Energy and Combustion Science	2007
7	568	Energy-aware wireless microsensor networks	Raghunathan, V; Schurgers, C; Park, S; et al.	IEEE Signal Processing Magazine	2002
8	567	A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions	Gogate, PR; Pandit, AB	Advances in Environmental Research	2004
9	559	Kinetics and mechanism of removal of Methylene blue by adsorption on various carbons - a comparative study	Kannan, N; Sundaram, MM	Dyes and Pigments	2001
10	555	A review of active filters for power quality improvement	Singh, B; Al-Haddad, K; Chandra, A	IEEE Transactions on Industrial Electronics	1999
11	526	Temperature dependence of thermal conductivity enhancement for nanofluids	Das, SK; Putra, N; Thiesen, P; et al.	Journal of Heat Transfer-Transactions of the Asme	2003
12	476	Natural fiber polymer composites: A review	Saheb, DN; Jog, JP	Advances in Polymer Technology	1999
13	451	Solid polymer electrolyte membranes for fuel cell applications - a review	Smitha, B; Sridhar, S; Khan, AA	Journal of Membrane Science	2005
14	440	Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste	Namasivayam, C; Kavitha, D	Dyes and Pigments	2002
15	386	Pool boiling characteristics of Nano-fluids	Das, SK; Putra, N; Roetzel, W	International Journal of Heat and Mass Transfer	2003
16	382	Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse - an agricultural waste	Mohan, D; Singh, KP	Water Research	2002
17	374	New developments in solid state fermentation: I- bioprocesses and products	Pandey, A; Soccol, CR; Mitchell, D	Process Biochemistry	2000
18	373	Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water_	Mohan, Dinesh; Pittman, Charles U., Jr.	Journal of Hazardous Materials	2006
19	370	A review of imperative technologies for wastewater treatment II: hybrid methods	Gogate, PR; Pandit, AB	Advances in Environmental Research	2004
20	339	Use of activated carbons prepared from sawdust and rice- husk for adsorption of acid dyes: a case study of Acid Yellow 36	Malik, PK	Dyes and Pigments	2003

4 CONCLUSION

The study analyses India's performance in the field of engineering, using publications data and different quantitative and qualitative measures. Its focuses on India's global publication share, growth rate, citation quality, international collaborative publications, its publication share and distribution in sub-fields using 15 years data from the Web of Science database. The study suggests the need to increase the pace of Indian engineering research and also improve its quality. Scientometric analysis is also extremely essential to plan appropriate measures to be taken to upgrade the research activities.

A detail scientometric analysis of engineering research of India and its comparison with other countries is very important to obtain a clear picture and to take necessary measures to upgrade the research performance. It is important to evaluate the research performance of major engineering research institutes of the country and to compare their performance among themselves and similar institutes of other countries.

The growth in literature has become a major concern for the scientists, scholars, and library professional as they try to keep themselves abreast with new advances in their subject, and information professionals try to organize this knowledge.

REFERENCES

1. Kademani, B. S. et. al. (2006). Nuclear Science and Technology research in India: A study based on INIS (1970-2002) database, *Malaysian Journal of Library and Information Science*, 11(1), 23-48.

- 2. Karpagam, R. et al. (2011). Mapping of nano science and nanotechnology research in India: a scientometric analysis, 1990–2009. *Scientometrics*, *89*, 501–522.
- 3. Sangam, S. L., Keshava., & Agadi, A. B. (2010) Growth pattern of Marine Engineering Literature. *Information Studies*, *16*(2), 113-120.
- 4. Varaprasad, S. J. D. et al. (2010). Research contributions of J.S. Yadav to chemical sciences: a scientometric study. *Malaysian Journal of Library & Information Science*, 15(2), 41-55.
- Gupta, B. M., Sharma, P., & Karisiddappa, C. R. (1997). Growth study of research literature in scientific specialties. A modeling perspective. *Scientometrics* 40(3), 507-528.
- 6. Seetharam, G. & Ravichandra Rao, I. K. (1999). Growth of food science and technology literature: A comparison of CFTRI, India and the world. *Scientometrics*. 44(1) 59-79.
- 7. Ravichandrarao, I. K. (2010). *Growth of Literature and Measures of Scientific Productivity: Scientometric Models*, Ess Ess Publications, New Delhi.
- 8. www.isiknowledge.com (Web of Science).
- Dandona, I., Raban, M. Z., & Guggilla, R. K. (2009). Trends of the public health research output from India during 2001–2008. *BMC Medicine*, 7, 59.
- Mahapatra, M. (1985). On the validity of the theory of exponential growth of scientific literature. In 15th IASLIC conference proceedings. Bangalore, *IASLIC*, 61-70.