
International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 329
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Satellite image processing using CUDA and
Hadoop architecture

Helly M. Patel, Krunal Panchal, Prashant Chauhan, M. B. Potdar

Abstract—With the advancement in digitalization vast amount of Image data is uploaded and used via Internet in today’s world. With this
revolution in uses of multimedia data, key problem in the area of Image processing, Computer vision and big data analytics is how to
analyze, effectively process and extract useful information from such data. Traditional tactics to process such a data are extremely time
and resource intensive. Studies recommend that parallel and distributed computing techniques have much more potential to process such
data in efficient manner. To process such a complex task in efficient manner advancement in GPU based processing is also a candidate
solution. This paper we introduce Hadoop-Mapreduce (Distributed system) and CUDA (Parallel system) based image processing. In our
experiment using satellite images of different dimension we had compared performance or execution speed of canny edge detection
algorithm. Performance is compared for CPU and GPU based Time Complexity.

Index Terms— Hadoop, CUDA, Image processing, GPU, Map reduce, Distributes System, Parallel system, HPC

——————————  ——————————

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 330
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

1 INTRODUCTION
The rate of image data generation is exceeding much more
faster than computational capability to process such data.
Major challenges and research opportunity reside in the
field of image processing and computer graphics to extract
valuable facts from such data. Besides this currently used
approaches to process such data are much more costly in
terms of resource requirement (hardware and software)
and require more execution time for processing.

Especially in case of satellite image processing to have
efficient gain High Performance Computing (HPC)
workstations are needed which are expensive. Emerging
Distributed and parallel computing systems are having
potential to process such data in efficient and less expensive
manner. Hadoop Map reduce framework is gaining
acceptance because of its scalable, fault tolerant and reliable
nature to process data in distributed location. Storage and
computational power of Hadoop map reduce is extensively
used now a days to process larger amount of unstructured
and structured data. CUDA on the other side is an
emerging parallel computing technology for graphics
processing using GPU. As it make use of GPU to process
graphics, it provide higher execution speed by using
threaded mechanism.

2 Related work

3 BACKGROUND
3.1 Apache Hadoop
Apache Hadoop [5] [6] is popular, open source, scalable,
distributed, java based programming model. Hadoop hides
the complex details of parallelization, fault tolerance, data
distribution, and load balancing from users [6]. Hadoop
consists of two chief components: Hadoop MapReduce and
Hadoop Distributed File System (HDFS) [5].

3.2 Hadoop Map reduce
MapReduce is a programming model for the parallel

processing of distributed large-scale data [5]. MapReduce
paradigm is computing framework of Hadoop composed of
a map function that performs filtering and sorting of input
data and a reduce function that performs a summary
operation. HDFS is a distributed, scalable, and portable file
system written in Java for the Hadoop framework, which
provides high availability by replicating data blocks on
multiple nodes [6]. The MapReduce job needs to undergo
two types of machine to complete the process, JobTracker
and TaskTracker. A cluster has only one JobTracker, on the
NameNode node, which is responsible for scheduling
work. And TaskTracker distributed in all DataNode node,
is responsible for the execution of tasks [5].

Fig. 1 Workflow in Map reduce Phase [2]

3.3 CUDA (Compute Unified Device Architecture)
A GPU card has many cores which are smaller than
the ones present on the CPU but can execute many
tasks in parallel [1]. Compute Unified Device Architecture
(CUDA) [5] is a C based programming model from
NVIDIA that exposes many core capability of GPU for easy
development and deployment of general purpose
computations [7]. In the CUDA context, the GPU is called
as a device, whereas the CPU is called as host. A kernel is a
set of computations that is offloaded by the CPU to be
executed on the GPU [7]. A CUDA kernel is executed on
the GPU by a grid of thread blocks, each consisting of a set
of threads [7].

————————————————
• Helly Patel is currently pursuing master’s degree in Computer engineering in L.J.I.E.T, India. E-mail: hpt1992@gmail.com
• Krunal Panchal is currently Assistant professor in computer engineering in L.J.I.E.T, India, E-mail: krunaljpanchal@gmail.com
• Prashant Chauhan is currently working as project scientist in Bhaskaracharya Institute for space and geo informatics ,Gandhinagar, Gujarat, India , E-

mail:Prashant.mecs@gmail.com
• Dr. M. B. Potdar is currently working as project director in Bhaskaracharya Institute for space and geo informatics ,Gandhinagar, Gujarat, India , E-

mail:mbpotdar@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 331
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Application processing steps on CUDA:

1. Setup the GPU and then Read the input

Fig. 2. Application processing flow in CUDA [8]

2. Copy data from main mem to GPU mem

3. CPU instructs the process to GPU

4. GPU executes it in parallel

5. Copy the result from GPU mem to main mem

6. Output the result [8]

3.3 Graphics Processing Unit (GPU)
GPUs are special processors that perform graphical task in
a massively parallel manner and thus supplied high
processing power [1]. It is most powerful and inexpensive
computational hardware which is widely used in the field
of Image processing. Massively-parallel threaded GPUs are
used to achieve a higher degree of performance and energy
efficiency. They can be regarded as massively parallel
processors with 10x faster computation and 10x higher
memory bandwidth than CPUs [1]. Currently, they are
used as co-processors for the CPU.

4 IMAGE PROCESSING FOR CANNY EDGE DETECTION
Description and extraction of features from image is an
important task useful for a wide range of application fields
such as object recognition, image segmentation, data
compression, land-water border etc. Edges in an image are
signified by a significant image intensity change which
represents important object features and boundaries
between objects in an image. This multi step algorithm is
considered as a standard and optimal detector among all
edge detector algorithm.

Three main objective of algorithm is

1) Detection: The probability of detecting real edge
points should be maximized while the probability of
falsely detecting non-edge points should be minimized.
This corresponds to maximizing the signal-to-noise ratio
[8].

2) Localization: The detected edges should be as close as
possible to the real edges [8].

3) Number of responses: Minimal number of edges should
be detected more than once [8].

Canny’s algorithm consists of five major steps:

I. Image smoothing

II. Gradient computation

III. Edge direction computation

IV. Nonmaximum suppression

V. Hysteresis.

I) Image smoothing

Smoothing serves the purpose of eliminating any sudden
changes in intensity that may occur from phenomena such
as image static, compression artifacts, camera problems, or
bright reflections. It will smooth the image to eliminate the
noise Eliminating these sudden changes reduces the
number of falsely detected edges in the output [8]

II) Gradient Computation

It finds the image gradient to highlight regions with high
spatial derivatives, the gradient of the image is used to
determine the edge locations, which lie inside areas of high
changes in intensity. Gradient computation for each
direction is performed through convolving the smoothed
image once with a mask that produces a horizontal
gradient and once with a vertical gradient mask. The
gradient magnitude for a location (X, Y) is obtained by
adding the absolute values of position (X, Y) on the
horizontal and vertical gradient image together, using the
formula [8]|𝛻| = |𝛻𝑥| + �𝛻𝑦�

Put all Equations using Insert Equation menu

III) Edge direction computation Edge direction is
computed using the horizontal and vertical gradient
images computed in the previous step. The direction for
an edge located at location (X, Y) is computed by

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 332
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

using the formula

Edges are then classified as being in one of four
directions by snapping them to their nearest positive 45-
degree angle [8].

IV) Nonmaximum suppression

It is used to localize the edges down to a single pixel. Each
pixel in the gradient is visited and its magnitude is
compared to that of each of its two perpendicular
neighbors. Every pixel that does not have a higher
magnitude than its neighbors has its value set to zero, and
all pixels that are local maxima are retained. Perpendicular
neighbor locations are computed based on the edge
directions that were previously computed [8]

V) Hysteresis

Many of the edges still present have very small
magnitudes ad are not proper edges. Hysteresis is used
to eliminate these edges. A high and a low threshold are
used for the hysteresis operation. The resultant image from
performing nonmaximum suppression is scanned and all
pixels that have magnitudes greater than the high
threshold are added to the output edge image. Each of the
neighbors of a newly added pixel are recursively scanned
and are added if they fall below a low threshold [8]

5 EXPERIMENTATION
In this work, we implemented CPU and GPU based canny
edge detection algorithm using Hadoop and CUDA
framework respectively. Another is standalone CPU based
java program. All three executed programs are compared to
analyze performance execution on CPU and GPU.

Following tables shows software and hardware
configuration used in experiments.

Table 1

Software configuration of node

Components Configurations and
Releases

OS Ubuntu 15.04 LTS
JDK 1.7.0_79

Hadoop 2.4.0
CUDA 7.5

Mention no of Hadoop Nodes

Table 2

 GPU key parameters

CUDA/GPU Specification Value / Description

Name GeForce GTX 750 TI

Number of Streaming
Processors (SMs)

640 CUDA core

Core speed 1020 MHz

Memory 2 GB of GDDR5
Memory clock 5.4 GBPS

Standard Memory
configuration

2048 MB

Experiment is performed on publically available satellite
image dataset. Performance comparison is done for
different for different image dimension. Following figures
shows results for canny edge detection algorithm in
different images for size. Performance is compared for
execution time for different platform. In all the images
shown in fig 3. , first row shows original images, second
row shows image processed by CPU and third row shows
GPU execution result. Table 3 shows comparative analysis
of execution time of each algorithm.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 333
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig. (a) Fig. (b) Fig. (c) Fig. (d) Fig. (e)

Fig. (f) Fig. (g) Fig. (h) Fig. (i) Fig. (j)

Fig 3. Canny Edge Detection with Satellite Image (original, CPU and GPU Images)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 334
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Table 3

Performance comparison for CPU and GPU
execution

Image
Dimension

Execution time
Java

(second)
Hadoop
(second)

CUDA
(mille

second)
225*225 2 1 90.41
259*194 3 2 88.47
512*512 7 4 87.09
1024*1024 13 8 85.21
2048*2048 33 27 83.55

Fig 4.Execution time of java program on CPU

Fig 5. Execution time of Hadoop program on CPU

Fig 6. Execution time of Hadoop program on CPU

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 335
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig 7 Execution Time of JAVA, Hadoop and CUDA

Fig 8 Performance Improvement in execution Time (%) in
GPU compare to CPU (Hadoop) execution

Above results shows that for experiment

performed for canny edge detection

algorithm, (I) for standalone JAVA

implementation execution time increase as

image dimension increase, (II) For Hadoop

based system same scenario happen like

java but execution time increases less

speedily then Java program.(III) For CUDA

based implementation contradictory

scenario happen then CPU implementation.

Execution time decreases as Image

dimension increases. Above experiment

shows that GPU are having larger potential

to efficiently process images compare to

CPU and execution time is much more

faster than CPU.

6 CONCLUSION
Canny edge detection algorithm performed on
CPU and GPU shows that for CPU execution time
increases with increase in image dimension while
for GPU execution time decreases increase in
image dimension. Which shows that by using GPU
based parallel processing techniques computing
power of CPU and GPU is fully utilized. The
entire image detection algorithm performed faster
for every size input image. For all image sizes, the
performance increases gradually in CPU based
execution. For the portions of the algorithm
performed entirely with the GPU (image
smoothing, gradient computation, edge direction
computation, and edge classification), the
improvement was much larger. The smallest
input image was processed 95.4 percent faster by
the GPU and the larger input images were
processed between 99.3 and 99.7 percent faster.

7 ACKNOWLEDGEMENT
This paper is carried out with the full support from
Bhaskaracharya Institute for Space Applications

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 336
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

and Geo-informatics and the director of Institute
Mr. T. P. Singh . I am also thankful to all the
members of the institute for supplying the precious
data and resources.

8 REFERENCES
[1] Asaduzzaman, Abu, Angel Martinez, and Aras

Sepehri. "A time-efficient image processing
algorithm for multicore/manycore parallel
computing." In SoutheastCon 2015, pp. 1-5.
IEEE, 2015.

[2] Yamamoto, Muneto, and Kunihiko Kaneko, "
Parallel image database processing with
MapReduce and performance evaluation, in
pseudo distributed mode." International
Journal of Electronic Commerce Studies 3, no.
2 (2013): 211-228.

[3] Ryu, Chungmo, Daecheol Lee, Minwook Jang,
Cheolgi Kim, and Euiseong Seo, "Extensible
video processing framework in apache hadoop." ,In
Cloud Computing Technology and Science
(CloudCom), 2013 ,IEEE 5th International
Conference on, vol. 2, pp. 305-310. IEEE, 2013.

[4] Tan, Hanlin, and Lidong Chen," An approach
for fast and parallel video processing on
Apache Hadoop clusters ." In Multimedia and
Expo (ICME), 2014 IEEE International
Conference on, pp. 1-6. IEEE, 2014.

[5] Zhang, Gongrong, Qingxiang Wu, Zhiqiang
Zhuo, Xiaowei Wang, and Xiaojin Lin. "A
Large-scale Images Processing Model Based on
Hadoop Platform." In Proceedings of the Second
International Conference on Innovative Computing
and Cloud Computing, p. 51. ACM, 2013.

[6] Zhang, Hong, Zhibo Sun, Zixia Liu, Chen Xu,
and Liqiang Wang, "Dart: A Geographic
Information System on Hadoop." ,In Cloud
Computing (CLOUD), 2015 IEEE 8th
International Conference on, pp. 90-97. IEEE,
2015

[7] Malakar, Ranajoy, and Naga Vydyanathan, "A
CUDA-enabled Hadoop cluster for fast
distributed image processing." National
Conference on Parallel Computing
Technologies (PARCOMPTECH),. IEEE, 2013.0

[8] http://www.hardwarezone.com/feature-cuda-
nvidia-turbo-charging-high-performance-
computing

IJSER

http://www.ijser.org/

	1 Introduction
	3 Background
	3.1 Apache Hadoop
	3.2 Hadoop Map reduce
	3.3 CUDA (Compute Unified Device Architecture)
	3.3 Graphics Processing Unit (GPU)

	4 Image processing for canny edge detection
	5 Experimentation
	6 Conclusion
	7 Acknowledgement
	8 References

