
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August 2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

SQL Injection Attack Solutions: A Review
Sruthy Manmadhan, Manesh T, Varghese Paul

Abstract— Web applications are becoming an important part of our daily life. So attacks against them also increases rapidly. Of these

attacks, a major role is held by SQL Injection Attacks (SQLIA). This attack is launched through specially crafted user inputs and target web

applications that used backend databases. Characteristics feature of this attack is that, it will change the intended query structure. To avoid

this type of attack, the best solution is to do not allow user to enter any part of the SQL query directly. In this paper, we describe SQL

Injection attack, various types and a detailed review of its solution techniques.

 Index Terms— Attack , Injection, SQL, Vulnerability, Web.

—————————— ——————————

1 INTRODUCTION

owadays, for most of the activities in our life, we depend
on internet or web applications. There exists a natural
trend that as the usage of a particular service increases;

the attacker‘s interest on it also increases. The same thing hap-
pened in case of web applications. Of many kinds of attacks
against web applications, SQL Injection Attack (SQLIA) is one
of the top most threats against them[1]. So it is highly requires
in the current scenario to have a good solution to prevent such
attack to secure the information. This is the motivation behind
this work.

SQL Injection targets the web applications that use a back
end database. Working of a typical web application is as fol-
lows: User is giving request through web browsers, which
may be some parameters like username, password, account
number etc. These are then passed to the web application pro-
gram where some dynamic SQL queries are generated to re-
trieve required data from the back end database.

SQL Injection attack is launched through specially crafted
user inputs. That is attackers are allowed to give requests as
normal users. Then they intentionally create some bad input
patterns which are passed to the web application code. If the
application is vulnerable to SQLIA, then this specially created
input will change the intended structure of the SQL query that
is being executed on the back end database and will affect the
security of information stored in the database. The tendency to
change the query structure is the most characteristics feature
of SQLIA which is being used for its prevention also.

For better understanding let us have look at the following
example. We all know that most of the applications that we
are accessing through internet will have a login page to au-
thenticate the user who is using the application. Figure 1 show
such a login page. Here when a user is submitting his
username and password, an SQL query is generated in the
back end to check whether the given credentials are valid or
not. Suppose the given username is 1 and password is 111, the
query will be:

Select * from login where user=’admin’ and pass=’admin’
This is the normal case and if any rows are selected by the

query, the user is allowed to log in. Now, figure 2 shows an
attack scenario. That is an attacker wants to log in without
correct username and password. Instead of entering valid
username if he uses injection string like ―hacker‘ OR ‗1‘=‘1‘—―
as username and ―something‖ as password, the query formed

will be like this:
Select * from login where user=’hacker’ or ‘1’=’1’ –‘ and pass=’’
When this query is executed in the database, it will always

return a true and the authentication will succeed.

Fig 1: Example Login- Normal Case

Fig 2: Example Login- Attack

N

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

Here the pattern ―1=1‖ will always be true and is called tau-
tology. Since, ―OR‖ operator is inserted by the attacker, the
query will return true even though the username and pass-
word are wrong. Also ―—― will have special purpose. It will
comment the remaining part of the query so that password
will not be checked.

The rest of this paper is organized as follows: section 2 de-
scribes different types of SQL Injection attacks. Section 3 de-
scribes different solution to this attack which is categorized
into three, defensive coding, static analysis, and defense
mechanisms. Section 4 concludes the review.

2 TYPES OF SQLIA

The SQLIA can be broadly classified into two: first order and
second order attacks. First of these will have direct effect on
the system whereas other doesn‘t have any direct harm. Dif-
ferent types of first order attacks are listed below[2]:

Tautologies: The main intention of this attack is to by-
pass authentication. For this they attack the field that is used
in a query‘s WHERE conditional. Transforming the condition-
al into a tautology causes all of the rows in the database table
to be returned so that he can login successfully without having
a valid username and password. The attack shown in figure 2
is an example of tautology attack.

Illegal/Incorrect Queries: This is the first step of SQL in-
jection attack. Here the intention of the attacker is to gather
information about the type and structure of the back end da-
tabase that is being used in the web application. This attack
exploits very descriptive default error pages returned by the
application servers.

Union Queries: This type of attack is mainly used to
bypass authentication and to extract data by changing the data
set returned for a given query. Format is ‗UNION SELECT
<part of injected query>‘, where the query after the UNION
keyword is fully under control of the attacker so that he/she
can retrieve data from any table which is not intended by the
actual query.

Piggybacked Queries: This attack mainly aims at ex-
tracting data. Like the concept of piggybacked acknowledge-
ment in computer networks where, acknowledgement of a
packet is sent along with the next packet, here, the attacker
tries to inject additional queries with original one.

Stored procedure Attack: This type of attack tries to exe-
cute stored procedures present in the database with malicious
inputs.

Inference: Main aim of this kind of attack is to identify
injectable parameters. The information can be inferred from
the behavior of the page by asking the server true/false ques-
tions. If the injected statement evaluates to true, the site con-
tinues to function normally. If the statement evaluates to false,
although there is no descriptive error message, the page dif-
fers significantly from the normally functioning page.

There are lots of prevention methods proposed
against these types of attacks. Table 1 includes an overview of

these techniques.

TABLE 1
OVERVIEW OF SOLUTION METHODS

Solution Overview

SQL DOM A set of classes that are strongly-typed to

a database schema are used to generate

SQL statements instead of string manipu-

lation.

MUSIC A system based on mutation based test-

ing.

SQLrand A strong random integer is inserted in the

SQL keywords.

AMNESIA This scheme identifies illegal queries

before their execution. Dynamically-

generated queries are compared with the

statically- built model using a runtime

monitoring.

CANDID Programmer-intended query structures are

guessed based upon evaluation runs over

non-attacking candidate inputs.

Tainting This method will check if any keywords

in a query are tainted before executing the

query.

Parse Tree

Validation

Comparing, at run time, the parse tree of

the SQL statement with and without user

inputs.

IDPS Combines signature based and anomaly

based detection.

Obfuscation A method which includes obfuscation and

reconstruction of queries

AIIDA An agent based system which integrated

the use of CBR, ANN and SVM.

Using Bio-

logical

algorithms

Uses an algorithm for pair wise sequence

alignment of amino acid code from web

applications.

3 LITERATURE REVIEW

3.1 DEFENSIVE CODING PRACTICES

It includes input validation and use of prepared statements.
Input validation is a burden for programmers because, they
have to manually decide valid inputs for each point of input
and do an extensive search for special characters, alternate
encodings and presence of back end commands.

PREPARED statements semantically separate the role
of keywords and data literals. Its use is very effective for new
web applications to be developed. Retrofitting already
launched applications with PREPARED statements is a huge
task and is not practical.

In general defensive coding practices can be applied
only at the time of programming. It doesn‘t consider millions
of applications that are already in use.

————————————————

 Sruthy Manmadhan is currentlyworking in Computer Science Depart-
ment of Adi Shankara Institute of Engineering and technology
,Kalady,India , E-mail: sruthym.88@gmail.com

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

3.1.1 SQL DOM

SQL DOM[3] is proposed for Object Oriented Programming
(OOP) environment. It doesn‘t consider stored procedure SQL
Injection attack. But, it is a slight improvement of defensive
coding practices because instead of relying completely on pro-
grammers to do all input validation, use a safe API which will
take care of security. For the generation of API, they proposes
an API generation tool, sqldomgen, which analyses database
schema at compile time and writes code for a custom set of
SQL query construction classes, which are directly called by
developers to build queries.

3.2 STATIC ANALYSIS TECHNIQUES
Limited to identifying points of inputs and query issuing loca-
tions, and checking whether every data flow from point of
input to query location is subject to proper input validation. In
this method also, programmer must manually evaluate and
declare the sanitizing blocks of code for each web application
and so this approach is not fully automatable.

3.2.1. MUSIC-Mutation Based Testing

Mutation is the act of deliberately altering a program‘s code,
then re-running a suite of valid unit tests against the mutated
program[4]. Mutation testing is a method of software testing,
which involves modifying programs' source code or byte code
in small ways. Mutation testing is done by selecting a set of
mutation operators and then applying them to the source pro-
gram one at a time for each applicable piece of the source
code. The result of applying one mutation operator to the pro-
gram is called a mutant. Mutants for SQL injection are Remove
WHERE keywords and conditions , Negate each of the unit
expression inside where conditions , Add parentheses in
where conditions and prepend ―FALSE AND‖ after the
WHERE keyword ,Unbalance parentheses of where condition
expressions , Set multiple query execution flags to true , Over-
ride commit and rollback options , Set the maximum number
of record returned by a result set to infinite , Set query execu-
tion delay to infinite and Override the escape character pro-
cessing flags. In mutation base testing author has suggested to
do the checking for SQL injection before uploading the web
service on the server. Advantage of this technique is it identi-
fies the vulnerabilities in advance that is it‘s like a precaution-
ary measure for SQL injection.

3.3 DEFENSE MECHANISMS

3.3.1. Randomization Based Method

One can randomize SQL keywords in parts of the query gen-
erated by an application and look for correctly randomized
keywords in SQL statements issued to the database to detect
attacks. This is the approach taken by SQLrand [5]. SQLRand
applies the concept of instruction-set randomization to SQL,
creating instances of the language that are unpredictable to the
attacker i.e create randomized instances of the SQL query lan-
guage, by randomizing the template query inside the CGI
script and the database parser. To allow for easy retrofitting of
our solution to existing systems, we introduce a de-
randomizing proxy, which converts randomized queries to

proper SQL queries for the database. Code injected by the
rogue client evaluates to undefined keywords and expres-
sions. The SQL standard keywords are manipulated by ap-
pending a random integer to them, one that an attacker cannot
easily guess. Therefore, any malicious user attempting an SQL
injection attack would be thwarted, for the user input inserted
into the ―randomized‖ query would always be classified as a
set of non-keywords, resulting in an invalid expression. Our
design consists of a proxy that sits between the client and da-
tabase server . Note that the proxy may be on a separate ma-
chine. By moving the de-randomization process outside the
DataBase Management System (DBMS) to the proxy, we gain
in flexibility, simplicity, and security. Fig 3 shows the pro-
posed architecture.

Fig 3: SQLrand System Architecture[5]

For example, in the C language, an SQL query, which takes
user input, may look like the following:

select gender, avg(age)
from cs101.students
where dept = %d
group by gender
The utility will identify the six keywords in the example

query and append the key to each one (e.g., when the key is
―123‖):

select123 gender, avg123 (age)
from123 cs101.students
where123 dept = %d
group123 by123 gender
This SQL template query can be inserted into the develop-

er‘s web application. The proxy, upon receiving the random-
ized SQL, translates and validates it before forwarding it to
the database. Note that the proxy performs simple syntactic
validation — it is otherwise unaware of the semantics of the
query itself. Problems of this method are:

 Limits scalability – due to manual retrofitting.
 It could result in a change of semantics even on be-

nign inputs – due to randomization.

3.3.2. Learning Intentions Statically

One approach in the literature has been to learn the set of all
intended query structures a program can generate and check
at runtime whether the queries belong to this set. This is used
in AMNeSIA [6], which is a tool which uses a model based

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

approach to detect and prevent SQL injection attacks in java
based web applications. In its static part, the technique uses
program analysis to automatically build a model of the legiti-
mate queries that could be generated by the application. In its
dynamic part, the technique uses runtime monitoring to in-
spect the dynamically-generated queries and check them
against the statically-built model. The technique consists of
four main steps.

 Identify hotspots: Scan the application code to identi-
fy hotspots— points in the application code that issue
SQL queries to the underlying database.

 Build SQL-query models: For each hotspot, build a
model that represents all the possible SQL queries
that may be generated at that hotspot. A SQL-query
model is a non-deterministic finite-state automaton in
which the transition labels consist of SQL tokens (SQL
keywords and operators), delimiters, and place hold-
ers for string values.

 Instrument Application: At each hotspot in the ap-
plication, add calls to the runtime monitor.

 Runtime monitoring: At runtime, check the dynami-
cally-generated queries against the SQL-query model
and reject and report queries that violate the model.

Drawback of this method is that, the core component of
AMNeSIA is the JSA (Java String Analyzer) tool which ex-
tracts the SQL query model from java source code. An issue
with the implementation of AMNeSIA method with ASP.NET
with C# is that there is no JSA kind of tool available for this
technology. Hence the AMNeSIA method cannot be directly
used to prevent SQL injection in ASP.NET based applications.

3.3.3. Learning Intentions Dynamically

To deduce (at runtime) the query structure intended by a pro-
grammer, the high-level idea is to dynamically construct the
structure of the programmer intended query whenever the
execution reaches a program location that issues a SQL-query.
Here the approach is to compute the intended query by run-
ning the application on candidate inputs that are self-evidently
non-attacking. An approach in literature using this idea is
CANDID [7]. To deduce (at runtime) the query structure in-
tended by a programmer, their high-level idea is to dynami-
cally construct the structure of the programmer intended que-
ry whenever the execution reaches a program location that
issues a SQL-query. This approach is to compute the intended
query by running the application on candidate inputs that are
self-evidently non attacking. The crux of this approach is to
avoid the problem of finding candidate inputs that exercise a
control path, and instead derive the intended query structure
directly from the same control path. It suggest that we can
simply execute the statements along the control path on any
benign candidate input, ignoring the conditionals that lie on
the path. The idea of executing the statements on a control
path, but not the conditionals along it, is a new idea.

Drawback is that, this technique using dynamic candidate
evaluation is inefficient in dealing with external functions and
when applied at wrong level.

3.3.4. Dynamic Tainting

Dynamic approaches based on tainting input strings, tracking
the taints along a run of the program, and checking if any
keywords in a query are tainted before executing the query are
a powerful formalism for defending against SQL injection at-
tacks. This is used in the work named Automatically hardening
web applications using precise tainting[8] and in many others.
Preventing SQL injections requires taking advantage of precise
taint information. Before sending commands to the database,
e.g. mysql_query, we run the following algorithm to check for
injections:

1. Tokenize the query string; preserve taint markings
with tokens.

2. Scan each token for identifiers and operator symbols
(ignore literals, i.e., strings, numbers, boolean values).

3. Detect an injection if an operator symbol is marked as
tainted. Operator symbols are ,()[].;:+-
*/\%^<>=~!?@#&|`

4. Detect an injection if an identifier is tainted and a
keyword. Example keywords include UNION, DROP,
WHERE, OR, AND.

Example Query : $cmd="SELECT user FROM users
WHERE user = ' " . $user . "' AND password = ' " . $password .
" ' ";

The resulting query string (with $user set to ' OR 1 = 1 ; -- ')
is tainted as follows: SELECT user FROM users WHERE user
= ' ' OR 1 = 1 ; -- ' AND password = 'x'.

They detect an injection since OR is both tainted and a
keyword.

Problem is that, even though this approach sounds good in
many cases, there are some difficulties in its implementation;
especially the propagation of taints across function calls is
very difficult.

3.3.5. Dynamic Bracketing

This is an approach where the application program is manual-
ly transformed at program points where input is read, and the
programmer explicitly brackets these user inputs (using ran-
dom strings) and checks right before issuing a query whether
any SQL keyword is spanned by a bracketed input. An exam-
ple approach using this method is Parse Tree validation to pre-
vent SQL Injection Attacks [9].

The technique is based on comparing, at run time, the parse
tree of the SQL statement before inclusion of user input with
that resulting after inclusion of input. A parse tree is a data
structure for the parsed representation of a statement. Parsing
a statement requires the grammar of the statement's language.
By parsing two statements and comparing their parse trees,
we can determine if the two queries are equal. When a mali-
cious user successfully injects SQL into a database query, the
parse tree of the intended SQL query and the resulting SQL
query do not match.

Problem is that, it relies on the programmer to correctly
handle the strings at various stages; for example, if the input is
checked by a conditional, the brackets must be stripped away
before evaluating the conditional.

3.3.6.Signature Based System

It is a combination of pattern-based detection and anomaly-

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

based detection for a robust intrusion detection system[10].
There are two models of detection used by this system.

 Signature-based Detection Model
 Anomaly-based Detection Model

The signature-based detection fails to detect unknown at-
tacks, while anomaly-based detection will detect unusual ac-
tivity and behavior. Here, signature means known SQL Injec-
tion patterns. In the signature-based detection model, the in-
put obtained from an HTML form is compared to signatures.
If the input is found to match a signature, access is denied and
the user is given a generic invalid username/password screen.
This is to reduce the information returned to attacker through
error messages. The drawback of the signature-based detec-
tion model is it cannot detect attacks that are unknown. For
this they use anomaly-based detection model. In the anomaly-
based detection model, the number of times a user attempts to
log into the system, successful or not, is considered. If the at-
tempts from a user exceed a predetermined number, the sys-
tem will lock out this user‘s IP for a period of time. Further
attacks are not possible because the attacker‘s IP address is
subsequently blocked.

3.3.7. Obfuscation Based Method

This technique combines static and dynamic analysis[11]. In
the static phase, the queries in the application are replaced by
queries in obfuscated form. The main idea behind obfuscation
is to isolate all the atomic formulas from other control ele-
ments of the query. During the dynamic phase, the user inputs
are merged into the obfuscated atomic formulas, and the dy-
namic verifier analysis the presence of possible SQLIA at
atomic formula level. Finally, a de-obfuscation step is per-
formed to recover the original query before submitting it to
the DBMS.

The proposed scheme has three phases, the first one is per-
formed statically, while the latter two are performed dynami-
cally.

 Obfuscating the legitimate query Q into Q0 at each
hotspot of the application.

 After merging the user inputs into the obfuscated
query at run-time, the dynamic verifier checks the ob-
fuscated query at atomic formula level in order to de-
tect the presence of possible SQLIA.

 Reconstruction of the original query Q from the ob-
fuscated query Q0 before submitting it to the data-
base, if no possible SQLIA was detected.

3.3.8. Agent Based Systems

AIIDA SQL agent[12] is a hybrid intelligent agent which inte-
grates the use of Case Based Reasoning (CBR) engine for adap-
tation and learning capability and a mixture of Artificial Neu-
ral Networks (ANN) and Support Vector Machine (SVM) for
classification. The lifetime of this agent includes four stages -
retrieval, reuse, revise and retain. The retrieval stage includes
selection of queries based on their type and memory classifica-
tion models. Reuse phase includes the prediction of new query
using a Multilayer Perceptron (MLP) and a SVM simultane-
ously. Once the output values for the ANN and the SVM are
obtained, compute the weighted average of the error rate of

each one of the techniques. If different classifications are ob-
tained from each technique, the query would then be classified
as suspicious, and subsequent revision would be launched.
The revise phase can be manual or automatic depending on
the output values. The automatic review is given for non-
suspicious cases. Retain phase includes reconstruction of clas-
sifiers offline to made it available for new classifications.

3.3.9. Using Biological Algorithms

In [13] they used a biological algorithm- Hirschberg algorithm,
which is a pair wise sequence alignment of amino acid code
formulated from Web application form parameter sent via
Web server. Then it analyzes the transaction to find out the
malicious access. The Hirschberg algorithm is a divide and
conquers approach to reduce the time and space complexity.
This system was able to stop all of the successful attacks and
did not generate any false positives. This algorithm finds least
cost sequence alignment between two strings and this capabil-
ity is utilized in finding SQL injection attacks in an optimal
way. Other alternative algorithms are BLAST and FASTA
which are suboptimal heuristics.

Table 2 includes overview of the prevention techniques dis-
cussed above. The comparison is based on the different types
of SQL Injection Attacks.

TABLE 1
COMPARISON OF SOLUTION METHODS

T
e
c
h

n
iq

u
e

T
a

u
to

lo
g

y

Illeg
a

l

P
ig

g
y

 B
a
c
k

U
n

io
n

S
to

re
d

 P
ro

-

c
e
d

-u
re

In
fe

re
n

c
e

A
lte

r
n

a
te

 e
n

-

c
o

d
in

g

SQL

DO

M

* * * * X * *

SQLr

and

* X * * X * X

AM

NESI

A

* * * * X * *

Tainti

ng

* * * * * * *

SQL

Chec

k

* * * * X * *

SQL

Guar

d

* * * * X * *

CAN

DID

* * * * * * *

4 CONCLUSION

Nowadays, many organizations use web applications to pro-
vide services to users. Web applications depend on the back-

International Journal of Scientific & Engineering Research Volume 4, Issue 8, August-2013
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

end database to supply with correct data. However, data
stored in databases are often targets of attackers. SQL injection
is a prominent technique that attackers use to compromise
databases. Even though many solutions are proposed against
this attack by researchers, database vendors and developers,
still, SQL injection vulnerability is one of the top vulnerabili-
ties present in the web applications. In this paper we describe
this attack in detail with its different types. Also we classified
different proposed solutions into main three categories, defen-
sive coding, static analysis and defense mechanisms and ex-
plained specific properties of each type. This is an exclusive
review on methods proposed in the literature.

REFERENCES

[1] OWASP, O.W.(2010). OWASP Top 10 for 2010‖. Category: OWASP Top
Ten Project

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

(Apr. 14, 2011).

[2] Halfond, W.G, Viegas, J, and Orso, A. (2006) A classification of SQL Injec-
tion Attacks and countermeasures.

[3] Russel A. McClure and Ingolf H. Kruger, 2005 SQL DOM: Compile Time

Checking of Dynamic SQL Statements.

[4] Hossain Shahriar Mohammad Zulkernine, MUSIC: Mutationbased SQL
Injection Vulnerability Checking , The Eighth International Conference on

Quality Software

[5] Boyd, S. W., and Keromytis, A. D. Sqlrand: Preventing sql injection attacks.

In ACNS (2004), pp. 292–302.

[6] Halfond, W., and Orso, A. AMNESIA: Analysis and Monitoring for NEu-

tralizing SQL-Injection Attacks. In ASE (2005), pp. 174–183.

[7] Prithvi Bisht, P. Madhusudan, V. N. VENKATAKRISHNAN. CANDID:

Dynamic Candidate Evaluations for Automatic Prevention of SQL Injection

Attacks. ACMTransactions on Information and System Security,Vol. 13,

No. 2, Article 14, Publication date: February 2010.

[8] Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., and Evans, D.
Automatically hardening web applications using precise tainting. In SEC

(2005), pp. 295–308.

[9] Buehrer, G., Weide, B. W., and Sivilotti, P. A. G. Using parse tree valida-
tion to prevent sql injection attacks. In SEM (2005).

[10] Varian Luong, 2010. Intrusion Detection and Prevention Systems: SQL

Injection Attacks.

[11] Raju Halder and Agostino Cortesi, 2010 IEEE, Obfuscation-based Analysis

of SQL Injection Attacks.

[12] Cristian PinZon, Alvaro Herreno, Juan F. De Paz, Javier Bajo and Emilio
Corchado, AIIDA-SQL: An Adaptive Intelligent Intrusion Detector Agent

for Detecting SQL Injection Attacks.

[13] Ezhumalai R and Aghila G, 2009 IEEE. Combinatorial Approach for Pre-

venting SQL Injection Attacks.

