
International Journal of Scientific & Engineering Research, Volume 3, Issue 6, June-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Reconfigurable VLSI architecture for FFT
computation

S.Sreenath Kashyap

Abstract— Parallel-prefix adders (also known as carry tree adders) are known to have the best Performance in VLSI designs. The Design of the three

types of carry-tree adders namely Kogge-Stone, sparse Kogge-Stone, and spanning carry look ahead adder is done and compares them to the simple

Ripple Carry Adder (RCA) . These designs of varied bit-widths were implemented on a Xilinx Spartan 3E FPGA and Dealy measurements were made
with XILINX. The carry-tree adders are expected to have a speed advantage over the RCA as bit widths approach in higher bit widths.An Efficient FFT
algorithm is designed. The adder which exhibits less delay is used is repaced in the Adder module of FFT.Thsi FFt can be implemented in the high speed

DSP applications.

Index Terms— FFT , Kogge stone adder , sparse kogge stone adder , Spanning kogge stone adder , Ripple carry adder , Carry look ahead adder

—————————— ——————————

1 INTRODUCTION

HE saying that if you can count , you can control . Addi-
tion is a fundamental operation for a digitsal system, digi-
tal signal processing or control system. A fast and accurate

operation of a digital system is greatly influenced by the per-
formance of the resident adders. Adders are also very impor-
tant component in digital systems because of their extensive
use in other basic digital operations such as subtraction, mul-
tiplication and division. Hence, improving performance of the
digital adder would greatly advance the execution of binary
operations inside a circuit compromised of such blocks. The
performance of a digital circuit block is gauged by analyzing
its power dissipation, layout area and its operating speed.

1.1 TYPES OF ADDERS:

The implementation technique of several types of adders and

study their characteristics and performance. There are so

many types of adders some of them are

 Ripple carry adder

 Carry look-ahead adder

 Carry tree adders

For the same length of binary number, each of the above ad-

ders has different performance in terms of Delay, Area, and

Power. All designs are assumed to be CMOS static circuits and

they are viewed from architectural point of view.

2. BASIC ADDER UNIT
 The most basic arithmetic operation is the addition of two

binary digits, i.e. bits. A combinational circuit that adds two

bits, according the scheme outlined below, is called a half

Adder. A full adder is one that adds three bits, the third pro-

duced from a previous addition operation. One way of im-

plementing a full adder is to utilizes two half adders in its im-

plementation. The full adder is the basic unit of addition em-

ployed in all the adders studied here.

 2.1 HALF ADDER:

A half adder is used to add two binary digits together, A and

B. It produces S, the sum of A and B, and the corresponding

carry out Co. Although by itself, a half adder is not extremely

useful, it can be used as a building block for larger adding

circuits (FA). One possible implementation is using two AND

gates, two inverters, and an OR gate instead of a XOR gate as

shown below.

Fig 2.1: Half adder and Logic Block

Table 2.1: Half adder truth table

T

————————————————

 S.Sreenath kashyap is currently pursuing masters degree program in elec-
tric power engineering in SRM University, INDIA,

 E-mail: kshyap.foru3@gmail.com

Fig.2.1.Half Adder.logic block

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2.2 FULL ADDER:

A full adder is a combinational circuit that performs the

arithmetic sum of three bits: A, B and a carry in, C, from a pre-

vious addition. Also, as in the case of the half adder, the full

adder produces the corresponding sum, S, and a carry out Co.

As mentioned previously a full adder maybe designed by two

half adders in series as shown.The sum of A and B are fed to a

second half adder, which then adds it to the carry in C (from a

previous addition operation) to generate the final sum S. The

carry out, Co, is the result of an OR operation taken from the

carry outs of both half adders. There are a variety of adders in

the literature both at the gate level and transistor level each

giving different performances.

 Table 2.2: Full adder truth table

2.3 RIPPLE CARRY ADDER:

 The ripple carry adder is constructed by

cascading full adders (FA) blocks in series. One full adder is

responsible for the addition of two binary digits at any stage

of the ripple carry. The carryout of one stage is fed directly to

the carry-in of the next stage.

 A number of full adders may be added to

the ripple carry adder or ripple carry adders of different sizes

may be cascaded in order to accommodate binary vector

strings of larger sizes. For an n-bit parallel adder, it requires n

computational elements (FA). It is composed of four full ad-

ders. The augend’s bits of x are added to the addend bits of y

respectfully of their binary position. Each bit 6 addition creates

a sum and a carry out. The carry out is then transmitted to the

carry in of the next higher-order bit. The final result creates a

sum of four bits plus a carry out (c4). Even though this is a

simple adder and can be used to add unrestricted bit length

numbers, it is however not very efficient when large bit num-

bers are used.

 One of the most serious drawbacks of

this adder is that the delay increases linearly with the bit

length. As mentioned before, each full adder has to wait for

the carry out of the previous stage to output steady-state re-

sult. Therefore even if the adder has a value at its output ter-

minal, it has to wait for the propagation of the carry before the

output reaches a correct value. Taking again the example in

figure 4, the addition of x4 and y4 cannot reach steady state

until c4 becomes available. In turn, c4 has to wait for c3, and so

on down to c1. If one full adder takes Tfa seconds to complete

its operation, the final result will reach its steady-state value

only after 4.Tfa seconds. Its area is n Afa . A (very) small im-

provement in area consumption can be achieved if it is known

in advance that the first carry in (c0) will always be zero. (If so,

the first full adder can be replacing by a half adder). In gener-

al, assuming all gates has the same delay and area of NAND-2

then this circuit 7 has 3n Tgate delay and 5n Agate.

2.4 CARRY LOOK AHEAD ADDER:

 As seen in the ripple-carry adder, its limiting

factor is the time it takes to propagate the carry. The carry

look-ahead adder solves this problem by calculating the carry

signals in advance, based on the input signals. The result is a

reduced carry propagation time. To be able to understand how

the carry look-ahead adder works, we have to manipulate the

Boolean expression dealing with the full adder. The Propagate

P and generate G in a full-adder, is given as:

P = Ai Bi ------------- Carry propagate

Gi =Ai Bi--------------- Carry generate

Notices that both propagate and generate signals depend only

on the input bits and thus will be valid after one gate delay.

The new expressions for the output sum and the carryout are

given by:

Si = Pi Ci-1

Fig.2.2.Full Adder.logic block

Fig 2.3: Ripple carry adder

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Ci+1= Gi + PiCi

These equations show that a carry signal will be generated in

two cases:

1) If both bits Ai and Bi are 1

2) If either Ai or Bi is 1 and the carry-in Ci is 1.

Let's apply these equations for a 4-bit adder: 13

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 +

P3P2P1P0C0

These expressions show that C2, C3 and C4 do not depend on

its previous carry-in. Therefore C4 does not need to wait for

C3 to propagate. As soon as C0 is computed, C4 can reach

steady state. The same is also true for C2 and C3

The general expression is

Ci+1= Gi + PiGi-1 + PiPi-1Gi-2 + ……. PiPi-1….P2P1G0 + PiPi-1

….P1P0C0.

This is a two level Circuit. In CMOS however the delay of the

function is non-linearly dependent on its fan in. Therefore

large fan-in gates are not practical.

2.4 SUM GENERATOR:

Carry look-ahead adder’s structure can be divided into three

parts: the propagate/generate generator, the sum generator,

and the carry generator.

2.5 CARRY GENERATOR:

 Below shows the carry generator needed to

add four bits numbers. To make the carry generator from 4

bits to n bits, we need only add AND gates and inputs for the

OR gate. The largest AND gate in the carry section has always

n+1 inputs and the number of AND gates requirements is n.

Therefore the design of a 16 bits adder needs the last carry

generator section to have 16 AND gates, where the biggest

AND gate has 17 inputs. Also the OR gate in this section needs

17 inputs.

The size and fan-in of the gates needed to implement the Car-

ry-Look-ahead adder is usually limited to four, so 4-bit Carry-

Look ahead adder is designed as a block. The 4-bit Carry Look

Ahead adder block diagram is shown below

In practice, it is not possible to use the CLA to realize constant

delay for the wider-bit adders since there will be a substantial

loading capacitance, and hence larger delay and larger power

consumption. The CLA has the fastest growing area and pow-

er requirements with respect to the bit size. Speed also will

drop with increase in bit size. So other techniques may be

used. For example a 32-bit Carry-Look ahead adder can be

built by using 8 cascaded 4-bit Carry-Look ahead adders (Rip-

ple through between the blocks).

Fig 2.4: Sum Generator

Fig 2.5: Carry Generator

 Fig 2.6: Carry look ahead adder with logic blocks

 012345678910111213141516

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:016:0

F ig 2.7: Carry look-ahead depth

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

In this carry look ahead adder the output of the first gp block

will be passed to the next and in the same way the entire oper-

ation takes palces for every four gp blocks in the form of stag-

es and then the delay will be less when compared to the ripple

carry adder.the further improvement of the reduction of delay

is being done in the carry tree adders such that low power and

area is being consumed.

3. Back ground
Parallel-prefix adders, also known as carry-tree adders, pre-

compute the propagate and generate signals. . The arrange-

ment of the prefix network gives rise to various families of

adders. The different types of carry tree adders are

 Kogge-stone adder

 Sparase kogge-stone adder

 Spanning carry look ahead adder

The above carry tree adders are the adders which are used in

thevlsi industry because of there high speed advantage over

the large bit widths . the less delay and power is one of the

most advantageous factor in which these adders perform .

3.1 KOGGE STONE ADDER:

 The Kogge-Stone adder is a parallel prefix form carry look-

ahead adder.It is widely considered the fastest adder design

possible. It is the common design for high-performance adders

in industry.It has high speed performance with reduced delay

and occupies less area . Each vertical stage produces a "propa-

gate" and a "generate" bit, as shown. The culminating generate

bits (the carries) are produced in the last stage (vertically), and

these bits are XOR'd with the initial propagate after the input

(the red boxes) to produce the sum bits. E.g., the first (least-

significant) sum bit is calculated by XORing the propagate in

the farthest-right red box (a "1") with the carry-in (a "0"), pro-

ducing a "1". The second bit is calculated by XORing the prop-

agate in second box from the right (a "0") with C0 (a "0"), pro-

ducing a "0".

The Kogge –Stone adder will have three types of blocks. They

are mainly

 Black cell

 White box

3.2 Black cell:

Black cell is mainly a combination of and or gates. the input

for this black cell will be the generate and the propagation of

the carry of the previous blocks .the output of this black cell

will be given to the next blocks such that the generation and

propagation of the carry is being done such that the output is

being produced .the below figure illustrates the block diagram

and the logic diagrammatic representation of the black cell.

3.3 White box:

White box is mainly a combination of and or gates . the input

for this white box will be the input bits .the output of this

white box will be the carry generated and such that it is prop-

agated to the next blocks such that the generation and propa-

gation of the carry is being and the output is being produced

.the below figure illustrates the block diagram and the logic

diagrammatic representation of the white box.

1:02:13:24:35:46:57:68:79:810:911:1012:1113:1214:1315:14

3:04:15:26:37:48:59:610:711:812:913:1014:1115:12

4:05:06:07:08:19:210:311:412:513:614:715:8

2:0

0123456789101112131415

15:014:013:0 12:011:010:0 9:0 8:0 7:0 6:0 5:0 4:0 3:0 2:0 1:0 0:0

F ig 2.8: Kogge Stone Adder

F ig 2.10: White Box

F ig 2.9 Black Box

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The kogge stone adder the generate and propagate blocks

produce the caay and sum such that each block output will act

as input to the next block and in the same way such that the

final sum is being produced . the below figure represents the

schematic how the generation and propogation of carry is

done for the production of the final sum

3.4 Sparse kogge stone adder:

Enhancements to the original implementation include increas-

ing the radix and sparsity of the adder. The radix of the adder

refers to how many results from the previous level of compu-

tation are used to generate the next one. The original imple-

mentation uses radix-2, although it's possible to create radix-4

and higher. Doing so increases the power and delay of each

stage, but reduces the number of required stages. The sparsity

of the adder refers to how many carry bits are generated by

the carry-tree. Generating every carry bit is called sparsity-1,

whereas generating every other is sparsity-2 and every fourth

is sparsity-4. The resulting carries are then used as the carry-in

inputs for much shorter ripple carry adders or some other ad-

der design, which generates the final sum bits. Increasing

sparsity reduces the total needed computation and can reduce

the amount of routing congestion.

Sparse kogge-stone adder is nothing but the enhancement of

the koggestone adder . the block in this sparse kogge stone

adder are similar to the kogge stone adder . in this sparse

kogge stone a reduction of number of stages is being done by

reduceing the genration and propagate units . the ouputs of

the previous GP units are being considered such that the

combination of consecutive Gp units produces carry once and

that one is being given as inout to the next stage . The GP unit

blocks will be same such that the generation and propagation

of carry is being done such that it will act as inout to the next

block and this operations are performed parallely ad stage by

stage this is how the reduction of stages is being done and

then the final sum is being produced by operations performed

by the combination Gp outs given as inouts to the full adders.

The delay reduction is done by reducing the number of stages

such that the low delay and low power and area is being

consumed such that the high speed is being obtained

3.5 Spanning CLA :

In this spanning CLA a reduction of number of stages is being

done by reduceing the genration and propagate units . the

ouputs of the previous GP units are being considered such

that the combination of consecutive Gp units produces carry

once and that one is being given as inout to the next stage .

 The GP unit blocks will be same such

that the generation and propagation of carry is being done

such that it will act as inout to the next block and this

operations are performed parallely ad stage by stage this is

how the reduction of stages is being done and then the final

sum is being produced by operations performed by the

combination Gp outs given as inouts to the full adders. The

delay reduction is done by reducing the number of stages such

that the low delay and low power and area is being consumed

such that the high speed is being obtained .

4. FFT DESIGN

DISCRETE Fourier transform (DFT) is one of the fundamental

operations in the field of digital signal processing. The DFT,

with a transform length equal to a power of 2, isusually im-

plemented with the fast Fourier transform (FFT). In many ap-

plications, such as asymmetric digital subscriberline (ADSL)

and orthogonal frequency-division multiplexing (OFDM), the

transform length is required to belarge and the previous DFT

structures with computational complexityof are not practical

for VLSI implementation. Inrecent literature, three low-cost

F ig 2.11: sparse Kogge Stone Adder

F ig 2.12: Spanning CLA

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 6

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

and high-throughput systolicarchitectures have been pre-

sented with a computational complexity of , which are regular

and are suitable for VLSI implementation. Although these -

point FFT algorithms are hardware efficient,they have long

latency of clock cycles and their hardwareutilization can be

improved further. For example, the datareordering strategy

used in [3] is the delay-feedback (DF) architecture with a de-

lay element utilization rate of 100%;but theutilization rate of

its multipliers is just 50%.Assume we have a prefetch buffer to

ensure concurrent readand write operations; the hardware can

be more efficiently used. By applying concurrent computation

into the butterfly operations,this brief improves the through-

put rate of the previouslyproposed FFT architectures by a fac-

tor of 2. High processingspeed leads to reduced number of

required delay elements sincefewer intermediate results need

to be stored. The latency canalso be reduced by a factor of 2.

The adders in the FFT design are being replaced with the ad-

ders which we are designed namely carry tree adders.

The high speend performance is being achieved by repalceing

the adders. There is a reduction in the area delay after using

the carry tree adders in the fft design.

5. RESULTS & DISCUSSION

F ig 2.13: FFT Algorithm

F ig 2.14: FFT Architecture

F ig 2.15: FFT Internal Blocks

Fig 2.16: Black Cell

Fig 2.17: White Cell

Fig : Black Cell

Fig 2.18: Kogge Stone Adder

Fig : Black Cell

Fig 2.19: Sparse Kogge Stone Adder

International Journal of Scientific & Engineering Research Volume 3, Issue 6, June-2012 7

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

5.1: Delay Analysis:

The synthesis of the above adders is done in Xilinx. The delay

variations are being observed in the adders and then the delay

variations are being compared in between the above designed

adders for different bit widths and then tabulated.

6. CONCLUSION AND FUTURE WORK
 The Adders namely ripple carry adder, carry

look ahead adder, Kogge stone adder , sparse Kogge stone

adder , spanning carry look ahead adder are discussed in de-

tail. VHDL code was written for all the modules within the

Adder. Each individual module was tested for its correct func-

tionality and then all the modules were integrated to form an

entire ripple carry and carry look ahead Kogge stone and

sparse Kogge stone adder modules spanning CLA. The adders

are designed for 16 bit widths only . Simulation is done in XI-

LINX and the delay is measured.

 This project has resulted in the development

of Adders Design with reduced delay. The FFT algorithm is

designed. The adder module in the FFT is being replaced by

the kogge stone adder. These Adders can be used in the place

where the adders will have efficient usage with less delay and

high speed applications can be implemented. Mostly these

types of adders can be used in DSP applications like FIR, IIR

filter designs. The FFT module algorithm can be implemented

in the design OFDM transmitter and receivers for the genera-

tion of OFDM signal by transforming a spectrum (amplitude

and phase of each component) into a time domain signal.

 REFERENCES

[1] N.H.E.Westte and D.Harris, CMOS VLSI Design ,Pearson-Addison-

 Wesley, 4 – edition,2011

[2] R.P. Brent and H.T. Kung, “A regular layout for parallel adders,”

 IEEE Trans. Comput., vol. C-31, pp. 260-264, 1982.

[3] D.Harris, “A Taxonomy of Parallel Prefix Networks,” in Proc. 37th
 Asilomar conf. signals systems and computers, PP. 2213-7, 2003.

[4] P.M.Kogge and H.S. Stone, “A Parallel Algorithm for the Efficient
 Solution of a General Class of Recurrence Equations,” IEEE Trans.
 On Computers, Vol. C-22, No 8. August 1973.
[5] P.Ndai, S. Lu, D. Somesekhar, and K. Roy, “Fine Grained Redundan
 cy in Adders,” Int. Symp. On Quality Electronic Design, PP. 317-
 321, March 2007.
[6] T.Lynch and E. E. Swartzlander, “A Spanning Tree Carry Lookaead
 Adder,” IEEE Trans. On computers, vol. 41 , no . 8,pp. 931-939,

 Aug 1992.
[7] D. Gizopoulos, M. Psarakis, A. Paschalis, and Y.Zorian, “Easily
 Testable Cellular Carry Lookahead Adders,” Journal of Electronic
 Testing: Theory and Applications 19,285-293,2003.
[8] S.Xing and W. W. H. Yu, “FPGA Adders: Performance Evaluation
 And Optimal Design,” IEEE Design & Test of Computers ,vol.
 15, no.1,ppp.24-29,jan1998.
[9] M.Becvar and P.Stukjunger,” fixed Point Arthematic in FPGA,”
 Acta Polytechnicia, vol.45, no.2,pp. 67-72,2005.

[10] K.Virtoroulis and S. J. Al-Khalili, “Perfromance of Parallel Prefix
 Adders Implemented With FPGA technology ,”

Fig 2.20 : Spanning CLA

Fig 2.21: FFT OUTPUT

ADDER BIT WIDTH DELAY(n SEC)

Kogge stone 16 15.072 n Sec

Sparse Kogge

stone

16 16.396 n Sec

Spanning CLA 16 18.247 n Sec

 Table : DELAY ANALYSIS BETWEEN ADDERS

Fig : Black Cell

