
International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 1
ISSN 2229-5518

 IJSER © 2012
http://www.ijser.org

Reconfigurable Embedded Multiprocessor
Architecture with ARISE interface using FPGA

M. Abragam Siyon Sing, K. Vidya

Abstract—Modern Embedded multiprocessor design presents challenges and opportunities that stem from task coarse granularity and the
large number of inputs and outputs for each task. They are complex systems that often require years to design and verify. A significant
factor is that engineers must allocate a disproportionate share of their effort to ensure that modern FPGA chips architecture behave
correctly. Therefore, in order to reduce the complexity in design and verification, a new architecture is proposed which is implemented
using FPGA. In this, the Embedded Processors are integrated with the shared memory system, synthesized that this system on an FPGA
environment and ARISE interface is used to extent the processor and this interface is used once. Then, an arbitrary number of processors
can be attached, via the interface, which can be a reconfigurable unit. Using this interface, more number of processor cores can be
attached and bit to bit conversions can also be possible from one processor to another processor, that is, asymmetric processors can be
built.

Index Terms – ARISE Interface, VLIW Processor, FPGA, Wrapper.

—————————— ——————————

1 INTRODUCTION
Any system that incorporates two or more microprocessors
working together to perform one or more related tasks is
commonly referred to as a multiprocessor system. In a
multiprocessing system, all CPUs may be equal, or some may
be reserved for special purposes. A combination of hardware
and operating-system software design considerations
determines the symmetry in a given system. For example,
hardware or software considerations may require that only
one CPU respond to all hardware interrupts, whereas all
other work in the system may be distributed equally among
CPUs; or execution of kernel-mode code may be restricted to
only one processor (either a specific processor, or only one
processor at a time), whereas user-mode code may be
executed in any combination of processors. Multiprocessing
systems are often easier to design if such restrictions are
imposed, but they tend to be less efficient than systems in
which all CPUs are utilized.

Systems that treat all CPUs equally are called symmetric
multiprocessing (SMP) systems. Because of the flexibility of
SMP and because of its cost being relatively low, this
architecture has become the standard for mainstream
multiprocessing. Multitasking operating systems can run
processes on any CPU in a SMP system because each
processor has the same view of the machine.

In systems where all CPUs are not equal, system resources
may be divided in a number of ways, including asymmetric
multiprocessing (ASMP), non-uniform memory access
(NUMA) multiprocessing, and clustered multiprocessing In
multiprocessing, the processors can be used to execute a
single sequence of instructions in multiple contexts (single-
instruction, multiple-data or SIMD, often used in vector
processing), multiple sequences of instructions in a single
context (multiple-instruction, single-data or MISD, used for
redundancy in fail-safe systems and sometimes applied to

describe pipelined processors or hyper-threading), or
multiple sequences of instructions in multiple contexts
(multiple-instruction, multiple-data or MIMD).

Tightly-coupled multiprocessor systems contain multiple
CPUs that are connected at the bus level. These CPUs may
have access to a central shared memory (SMP or UMA), or
may participate in a memory hierarchy with both local and
shared memory (NUMA). The IBM p690 Regatta is an
example of a high end SMP system. Intel Xeon processors
dominated the multiprocessor market for business PCs and
were the only x86 option until the release of AMD's Opteron
range of processors in 2004. Both ranges of processors had
their own on board cache but provided access to shared
memory; the Xeon processors via a common pipe and the
Opteron processors via independent pathways to the system
RAM.

Chip multiprocessors, also known as multi-core computing,
involves more than one processor placed on a single chip and
can be thought of the most extreme form of tightly-coupled
multiprocessing. Mainframe systems with multiple
processors are often tightly-coupled.

Loosely-coupled multiprocessor systems (often referred to as
clusters) are based on multiple standalone single or dual
processor commodity computers interconnected via a high
speed communication system (Gigabit Ethernet is common).
A Linux Beowulf cluster is an example of a loosely-coupled
system.

Tightly-coupled systems perform better and are physically
smaller than loosely-coupled systems, but have historically
required greater initial investments and may depreciate
rapidly; nodes in a loosely-coupled system are usually
inexpensive commodity computers and can be recycled as
independent machines upon retirement from the cluster.
Power consumption is also a consideration. Tightly-coupled
systems tend to be much more energy efficient than clusters.

International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 2
ISSN 2229-5518

 IJSER © 2012
http://www.ijser.org

This is because considerable economies can be realized by
designing components to work together from the beginning
in tightly-coupled systems, whereas loosely-coupled systems
use components that were not necessarily intended
specifically for use in such systems.

2 MULTIPROCESSORS
Multiprocessor system consists of two or more connected
processors that are capable of communicating. This can be
done on a single chip where the processors are connected
typically by either a bus or a NoC. Alternatively, the
multiprocessor system can be in more than one chip, typically
connected by some type of bus, and each chip can then be a
multiprocessor system. A third option is a multiprocessor
system working with more than one computer connected by
a network, in which each computer can contain more than
one chip, and each chip can contain more than one processor.
Most modern supercomputers are built this way.

 A parallel system is presented with more than one task,
known as threads. It is important to spread the workload
over the entire processor, keeping the difference in idle time
as low as possible. To do this, it is important to coordinate the
work and workload between the processors. Here, it is
especially crucial to consider whether or not some processors
are special-purpose IP cores. To keep a system with N
processors effective, it has to work with N or more threads so
that each processor constantly has something to do.
Furthermore, it is necessary for the processors to be able to
communicate with each other, usually via a shared memory,
where values that other processors can use are stored. This
introduces the new problem of thread safety. When thread
safety is violated, two processors (working threads) access
the same value at the same time. Consider the following code:

 A = A + 1

When two processors P1 and P2 execute this code, a number
of different outcomes may arise due to the fact that the code
will be split into three parts.

L1 : get A;
L2 : add 1 to A;
L3 : store A;

It could be that P1 will first execute L1, L2 and L3 and
afterward P2 will execute L1, L2 and L3. It could also be that
P1 will first execute L1 followed by P2 executing L1 and L2,
giving another result. Therefore, some methods for restricting
access to shared resources are necessary. These methods are
known as thread safety or synchronization. Moreover, it is
necessary for each processor to have some private memory,
where the processor does not have to think about thread
safety to speed up the processor. As an example, each
processor needs to have a private stack. The benefits of
having a multiprocessor are as follows:

1. Faster calculations are made possible.
2. A more responsive system is created.

3. Different processors can be utilized for different
tasks.

In the future, we expect thread and process parallelism to
become widespread for two reasons: the nature of the
applications and the nature of the operating system.
Researchers have therefore proposed two alternative micro
architectures that exploit multiple threads of control:
simultaneous multithreading (SMT) and chip multiprocessors
(CMP).

Chip multiprocessors (CMPs) use relatively simple single-
thread processor cores that exploit only moderate amounts of
parallelism within any one thread, while executing multiple
threads in parallel across multiple processor cores.

Wide-issue superscalar processors exploit instruction level
parallelism (ILP) by executing multiple instructions from a
single program in a single cycle. Multiprocessors (MP) exploit
thread-level parallelism (TLP) by executing different threads
in parallel on different processors.

3 PROPOSED ARCHITECTURE
 The Proposed Embedded Multiprocessor Architecture uses
a new interface called ARISE interface to integrate the
Embedded Processors. This is done by assigning one or more
pipeline stages of the ARISE Interface to the corresponding
pipeline of the processor. In this model, three processors are
used with different functions, that is, integer operations,
load-store operations and a VLIW (Very Long Instruction
Word) processor, which is controlled by SDRAM control unit.

Fig.1.Proposed Block Diagram

The instructions that are executed from the control unit are
fed into the processor. The core processor contains a decoder
called ARISE Instruction Decoder, which is used to determine
the type of instruction that is executed.

International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 3
ISSN 2229-5518

 IJSER © 2012
http://www.ijser.org

Instructions are pre-decoded by this Decoder to determine
their type (CP or ARISE instructions) and they are issued to
the CP or to the interface. Utilizing the Opcode- to-Id Table,
the opc field, which has limited bit-width, is assigned to a
unique identifier, Id, which can be of arbitrary size. The Id
specifies an ARISE operation implemented on a CU
(Computing Units). The table also allows the dynamic (at
execution time) reassignment of the opc to an Id. Thus, the
same opc in an ARISE instruction can be assigned to different
ARISE operations alleviating in that way the Opcode space
explosion problem. Also, the assignment of opc to ARISE
operations is not fixed. Thus, new CUs and ARISE operations
can be easily included assigning each operation to an Id. In
that way, the modularity and scalability of the machine is
enhanced. Since an ARISE operation can be referenced
through the opc, which is encoded in the instruction word of
the processor, the control communication overhead is
minimized.

The IOB provides temporary storage space for the operands
of an ARISE operation. It is exploited (through a sequence of
move instructions) to support operations with more operands
than the CP’s register file provides/accepts per instruction. It
is also configured to utilize the complete bandwidth of the
register file. Thus, the operand limitation problem is
addressed with minimum data communication overhead
(without considering the case of increasing the register file
ports).

The wrapper controls the configuration and execution of an
ARISE operation. It also serves the memory accesses of the
CUs through the CP’s memory ports. Moreover, it is used for
storing the ARISE configuration bit stream for each
operation.

4 ARISE INTERFACE
Aristotle Reconfigurable Instruction Set Extension (ARISE)
framework is a systematic approach, that is used to extend
the processors to support any number and type of computing
Units. The ARISE interface has three parts: (1) The control
unit, (2) The Opcode-to-Id table, (3) The input/output buffer
(IOB).

To incorporate the ARISE interface, the pipeline of the Core
Processor is easily integrated with the Pipeline of the ARISE
Interface. The interface can stall the CP and block interrupts.
To pre-decode an instruction, the Fetch stage of the CP is
extended by the ARISE instruction decoder, which produces
the ARISE and CP instruction words and forwards them to
the PRE and ID stages, respectively. At the PRE stage, based
on the received instr value, the ARISE Control Unit generates
the control signals for all ARISE components.

Fig.2. ARISE Interface

The Opcode-to-Id table holds the assignment between the
opc of an ARISE operation and the unique identifier, Id, of
the operation. However, the bit-width of the field is limited.
Hence, only a limited number of different ARISE operations
can be supported (N operations). To overcome this, the Id
value is used to identify ARISE operations. As the Id can be
of arbitrary bit-width an “unlimited” number of operations
(M operations with N M) are supported. To port an
operation to the ARISE machine, the designer only needs to
associate it with a unique Id. Then, the wrapper is
responsible to receive the Id and appropriately control the
corresponding CU.

The IO Buffer consists of two register banks. When an ARISE
operation needs more operands than the register file
provides, a sequence of move instructions (movta, movfa)
reads and writes the operands to consecutive places in the
banks. The data transfer between the CP and CUs is
accomplished utilizing all ports of the register file, which
results in fully exploitation of the register file bandwidth.
Moreover, since the IOBs operate as pipeline registers, no
extra latency is introduced. As a consequence, the operand
limitation problem is resolved, while the communication
overhead is minimized, under the consideration that the
register file ports do not increase.

The wrapper is employed when a new Computing Unit is
incorporated. It can be implemented as hardwired unit or
hosted on the reconfigurable CU itself. It maps a range of Ids
to the corresponding CU. Each ARISE operation
implemented by this CU is identified by one of the above Ids.
Also, the wrapper is responsible to: (1) Configure the CU and
(2) Control the execution of the operations implemented on
the CU. To accomplish this, the wrapper includes a table that
holds the ARISE configuration bit stream for each operation
implemented on the CU. This bit stream is divided into
several words. The size of each word equals to the number of
bits provided per cycle by the memory.

The Configuration Controller of the wrapper undertakes the
control and starts fetching the configuration bitstream from

International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 4
ISSN 2229-5518

 IJSER © 2012
http://www.ijser.org

the memory. The words of the bitstream are stored in
consecutive (between start and end addresses) places in
configuration memory allowing the configuration controller
to produce their addresses. The first part of the bitstream is
the ARISE configuration bitstream which the Configuration
Controller stores in the table. The rest is the configuration
bitstream for the reconfigurable CU and it is forwarded to the
CU without storing it in the wrapper.

The control the execution of an operation in the wrapper is
accomplished by the Execution Controller based on the
ARISE bitstream. The Execution Controller performs the
following actions: 1) identify if the latency (cycles) of the
operation is provided or not; 2) stalls the CP for the number
of cycles, if they are provided; otherwise stalls the CP until
the CU signals the completion of the operation; 3) sets the
ARISE Status Register; and 4) blocks interrupts to CP as it is
specified in the ARISE configuration bitstream. Also, the
wrapper serves the memory access requests by CUs.
Specifically, a CU provides the address of the data memory
that needs to access. If the ARISE operation is executed in
concurrent mode and the CP has also requested a memory
access, the CP is stalled. The corresponding data are directly
accessible by the CU. Thus, an ARISE operation can be ported
to a CU irrespectively of the implementation technology.

To utilize the CUs, the processor’s ISA is extended once with
a set of specific instructions, called ARISE instructions, which
control: (1) The execution of the ARISE operations on the
CUs, (2) The data communication between the CP and the
CUs, (3) The configuration of the CUs. All ARISE instructions
have the same format that includes three fields. These fields
define: (1) The ARISE instruction (instr), (2) The Opcode (opc)
of an ARISE operation, (3) The Operands of the instruction.
To extend the CP’s ISA with ARISE instructions these fields
are encoded in the instruction word of a CP as shown in Fig.
3. As an example, a processor’s instruction word format is
assumed of which only one opcode, of the available ones of
the CP, is reserved for all ARISE instructions. The secondary
field sec is used to encode both the instr and opc fields, while
the operands fields are the same. The operands of an ARISE
instruction are accessed via the register file of the CP. It
should be noted that the instruction word format in Fig. 3 is
typical for embedded processors, like ARM, MIPS, and
PowerPC. Therefore, the extension is similarly possible for a
wide range of embedded processors.

Fig.3.Encoding of the ARISE instruction word

The interface is organized in a pipeline structure, which was
designed to easily extent the pipeline of the CP. Specifically,

in an embedded processor each instruction is executed in
three logic stages which are:

 The pre-processing (PRE) stage, where the instructions
are decoded and the operands are fetched,

 The processing (PRO) stage, where the operands are
processed,

 The post-processing (POST) stage, where the results are
send back to the register file.

Similarly, the pipeline of the ARISE interface follows the
previous approach. Thus, the ARISE pipeline can be easily
integrated to the pipeline of the processor by assigning one or
more pipeline stages of the processor to the corresponding
ARISE pipeline stage. Thus, the ARISE interface be easily
integrated even to processors with deep pipelines.

5 CONCLUSION
Embedded Multiprocessors are used for the areas where
fastest calculations, more responsive and performing
different tasks are needed. Therefore, an Architecture for
Reconfigurable Embedded Multiprocessor had been
proposed with the help of ARISE interface using FPGA. With
which, Asymmetric multiprocessors can be developed and
any number of processors can be added to the core processors
using this interface. Bit conversion is also possible between
different processors through the ARISE interface.

REFERENCES
[1] Converting Thread-Level Parallelism to Instruction-Level

Parallelism via Simultaneous Multithreading. J. lo, S. Eggers, J.
Emer, H. Levy, R. Sstamm, and D. Tullsen.

[2] Multiprocessor System on chip Technology, Wayne Wolf.
[3] Design of a Branch Prediction Unit of a Microprocessor Based on

Superscalar Architecture using VLSI, Dr. Mrs. Sulabha S. Apte, Ms.
Priya P. Ravale, Solapur University.

[4] A reactive multiprocessor architecture for heterogeneous embedded
systems, Zoran Salcic, Dong Hui, Partha S. Roop, Morteza Biglari-
Abhari.

[5] A Single-Path Chip-Multiprocessor System, Martin Schoeberl, Peter
Puschner, and Raimund Kirner.

[6] A Complexity-Effective Architecture for Accelerating Full-System
Multiprocessor Simulations Using FPGAs, Eric S. Chung, Eriko
Nurvitadhi, James C. Hoe, Babak Falsafi, Ken Mai.

[7] R. Wittig and P. Chow, “OneChip: An FPGA processor with
reconfigurable logic,” in Proc. IEEE Symp. FPGAs Custom Comput.
Mach., 1996, pp. 126–135.

[8] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, “Synthesis of
custom processors based on extensible platforms,” in Proc.
IEEE/ACM Int. Conf. Comput.-Aided Des. (ICCAD), 2002, pp. 641–
648.

[9] N. Vassiliadis, N. Kavvadias, G. Theodoridis, and S. Nikolaidis, “A
RISC architecture extended by an efficient tightly coupled
reconfigurable unit,” Int. J. Electron., vol. 93, no. 6, pp. 421–438, Jun.
2006.

[10] A. Lodi, M. Toma, F. Campi, A. Cappelli, R. Canegallo, and R.
Guerrieri, “A VLIW processor with reconfigurable instruction set
for embedded applications,” IEEE J. Solid-State Circuits, vol. 38, no.
11, pp. 1876–1886, Nov. 2003.

One Reserved
ARISE Opcode

Processor
Instruction Word

ARISE
Instruction Word

Opcode Operand sec

Instr opc operands

Opcode Operand

Instr opc operands

International Journal of Scientific & Engineering Research Volume 3, Issue 1, January-2012 5
ISSN 2229-5518

 IJSER © 2012
http://www.ijser.org

[11] Farayadon Karim, Alain Mellan, Anh Nguyen, Utku Aydonat, and
Tarek S. Abdelrahman. A Multi-Level Computing Architecture for
Embedded Multimedia Applications. IEEE Micro, 24(3):55–56, 2004.

[12] H. Peter Hofstee. Power Efficient Processor Architecture and The
Cell Processor. In HPCA ’05: Proceedings of the 11th International
Symposium on High-Performance Computer Architecture, pages
258–262, Washington, DC, USA, 2005. IEEE Computer Society.

[13] J. Scott, L. Lee, J. Arends, and B. Moyer, “Designing the low-power
M*CORE architecture,” in Proc. Int. Symp. Comput. Arch. Power
Driven Microarch. Workshop, 1998, pp. 145–150.

[14] N. Vassiliadis, G. Theodoridis, and S. Nikolaidis, “Exploring
opportunities to improve the performance of a reconfigurable
instruction set processor,” Int. J. Electron., vol. 94, no. 5, pp. 481–
500, 2007.

[15] S. Hauck, T. W. Fry,M.M. Hosler, and J. P. Kao, “The chimaera
reconfigurable functional unit,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 12, no. 2, pp. 206–217, Feb. 2004.

[16] N. Vassiliadis, N. Kavvadias, G. Theodoridis, and S. Nikolaidis, “A
RISC architecture extended by an efficient tightly coupled
reconfigurable unit,” Int. J. Electron., vol. 93, no. 6, pp. 421–438, Jun.
2006.

[17] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M.
C. Filho, “MorphoSys: An integrated reconfigurable system for
dataparalleland computation-intensive applications,” IEEE Trans.
Computers, vol. 49, no. 5, pp. 465–481, May 2000.

[18] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable
multimedia array coprocessor,” in Proc. ACM/SIGDA 6th Int.
Symp. Field Program. Gate Arrays (FPGA), 1998, p. 261.

[19] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, “An
architecture framework for transparent instruction set
customization in embedded processors,” in Proc. 32nd Annu. Int.
Symp. Comput. Arch. (ISCA), 2005, pp. 272–283.

AUTHORS BIOGRAPHY
M. Abragam Siyon Sing received his B.E
(Electrical and Electronics) Degree from
Institute of Road and Transport
Technology, Erode - Affiliated to Anna
University, Chennai. Currently he is
pursuing M.E Degree in Vel Tech Multi
Tech Dr.RR Dr.SR Engineering College,
Chennai, affiliated to Anna University.

His Area of interest includes Embedded System and VLSI
Design.

K. Vidya received her B.E from Vel Sri
Rangarajan Sakunthala College of
Multimedia, Chennai in 2005 and M.E
degree from Sri Sivasubramaniya Nadar
College of Engineering, Chennai in 2007.
She is currently working as an Assistant
Professor in Electrical and Electronics

Engineering at Vel Tech Multi Tech Dr.RR Dr.SR Engineering
College, affiliated to Anna University, Chennai. She has 4
years of teaching experience in Engineering College. She has
been teaching the subjects: Measurement & Instrumentation
and Electrical Engineering. Her area of interest includes
Image Processing and Power System.

	1 Introduction
	2 Multiprocessors
	3 Proposed Architecture
	4 Arise Interface
	5 Conclusion
	References
	Authors Biography

