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Abstract—Modern Embedded multiprocessor design presents challenges and opportunities that stem from task coarse granularity and the 
large number of inputs and outputs for each task. They are complex systems that often require years to design and verify. A significant 
factor is that engineers must allocate a disproportionate share of their effort to ensure that modern FPGA chips architecture behave 
correctly. Therefore, in order to reduce the complexity in design and verification, a new architecture is proposed which is implemented 
using FPGA.  In this, the Embedded Processors are integrated with the shared memory system, synthesized that this system on an FPGA 
environment and ARISE interface is used to extent the processor and this interface is used once. Then, an arbitrary number of processors 
can be attached, via the interface, which can be a reconfigurable unit. Using this interface, more number of processor cores can be 
attached and bit to bit conversions can also be possible from one processor to another processor, that is, asymmetric processors can be 
built. 

Index Terms – ARISE Interface, VLIW Processor, FPGA, Wrapper.  

——————————      —————————— 
 

1  INTRODUCTION 
Any system that incorporates two or more microprocessors 
working together to perform one or more related tasks is 
commonly referred to as a multiprocessor system. In a 
multiprocessing system, all CPUs may be equal, or some may 
be reserved for special purposes. A combination of hardware 
and operating-system software design considerations 
determines the symmetry in a given system. For example, 
hardware or software considerations may require that only 
one CPU respond to all hardware interrupts, whereas all 
other work in the system may be distributed equally among 
CPUs; or execution of kernel-mode code may be restricted to 
only one processor (either a specific processor, or only one 
processor  at  a  time),  whereas  user-mode  code  may  be  
executed in any combination of processors. Multiprocessing 
systems  are  often  easier  to  design  if  such  restrictions  are  
imposed,  but  they  tend  to  be  less  efficient  than  systems  in  
which all CPUs are utilized. 

Systems that treat all CPUs equally are called symmetric 
multiprocessing  (SMP)  systems.  Because  of  the  flexibility  of  
SMP and because of its cost being relatively low, this 
architecture has become the standard for mainstream 
multiprocessing. Multitasking operating systems can run 
processes on any CPU in a SMP system because each 
processor has the same view of the machine.  

In systems where all CPUs are not equal, system resources 
may be divided in a number of  ways,  including asymmetric  
multiprocessing (ASMP), non-uniform memory access 
(NUMA) multiprocessing, and clustered multiprocessing In 
multiprocessing, the processors can be used to execute a 
single sequence of instructions in multiple contexts (single-
instruction, multiple-data or SIMD, often used in vector 
processing), multiple sequences of instructions in a single 
context (multiple-instruction, single-data or MISD, used for 
redundancy in fail-safe systems and sometimes applied to 

describe pipelined processors or hyper-threading), or 
multiple sequences of instructions in multiple contexts 
(multiple-instruction, multiple-data or MIMD). 

Tightly-coupled multiprocessor systems contain multiple 
CPUs that are connected at the bus level. These CPUs may 
have access to a central shared memory (SMP or UMA), or 
may participate in a memory hierarchy with both local and 
shared memory (NUMA). The IBM p690 Regatta is an 
example  of  a  high  end  SMP  system.  Intel  Xeon  processors  
dominated the multiprocessor market for business PCs and 
were the only x86 option until the release of AMD's Opteron 
range of processors in 2004. Both ranges of processors had 
their own on board cache but provided access to shared 
memory; the Xeon processors via a common pipe and the 
Opteron processors via independent pathways to the system 
RAM. 

Chip multiprocessors, also known as multi-core computing, 
involves more than one processor placed on a single chip and 
can be thought of the most extreme form of tightly-coupled 
multiprocessing. Mainframe systems with multiple 
processors are often tightly-coupled. 

Loosely-coupled multiprocessor systems (often referred to as 
clusters) are based on multiple standalone single or dual 
processor commodity computers interconnected via a high 
speed communication system (Gigabit Ethernet is common). 
A Linux Beowulf cluster is an example of a loosely-coupled 
system. 

Tightly-coupled systems perform better and are physically 
smaller than loosely-coupled systems, but have historically 
required greater initial investments and may depreciate 
rapidly; nodes in a loosely-coupled system are usually 
inexpensive commodity computers and can be recycled as 
independent machines upon retirement from the cluster. 
Power consumption is also a consideration. Tightly-coupled 
systems tend to be much more energy efficient than clusters. 
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This is because considerable economies can be realized by 
designing components to work together from the beginning 
in tightly-coupled systems, whereas loosely-coupled systems 
use components that were not necessarily intended 
specifically for use in such systems. 

2  MULTIPROCESSORS 
Multiprocessor system consists of two or more connected 
processors that are capable of communicating. This can be 
done on a single chip where the processors are connected 
typically by either a bus or a NoC. Alternatively, the 
multiprocessor system can be in more than one chip, typically 
connected by some type of bus, and each chip can then be a 
multiprocessor system. A third option is a multiprocessor 
system working with more than one computer connected by 
a network, in which each computer can contain more than 
one chip, and each chip can contain more than one processor. 
Most modern supercomputers are built this way. 

 A parallel system is presented with more than one task, 
known as threads. It is important to spread the workload 
over the entire processor, keeping the difference in idle time 
as low as possible. To do this, it is important to coordinate the 
work and workload between the processors. Here, it is 
especially crucial to consider whether or not some processors 
are special-purpose IP cores. To keep a system with N 
processors effective, it has to work with N or more threads so 
that each processor constantly has something to do. 
Furthermore, it is necessary for the processors to be able to 
communicate with each other, usually via a shared memory, 
where values that other processors can use are stored. This 
introduces the new problem of thread safety. When thread 
safety is violated, two processors (working threads) access 
the same value at the same time. Consider the following code: 

                A = A + 1 

When two processors P1 and P2 execute this code, a number 
of different outcomes may arise due to the fact that the code 
will be split into three parts. 

L1 : get A; 
L2 : add 1 to A; 
L3 : store A; 

It could be that P1 will first execute L1, L2 and L3 and 
afterward P2 will execute L1, L2 and L3. It could also be that 
P1 will  first  execute L1 followed by P2 executing L1 and L2,  
giving another result. Therefore, some methods for restricting 
access to shared resources are necessary. These methods are 
known as thread safety or synchronization. Moreover, it is 
necessary for each processor to have some private memory, 
where  the  processor  does  not  have  to  think  about  thread  
safety to speed up the processor. As an example, each 
processor  needs  to  have  a  private  stack.  The  benefits  of  
having a multiprocessor are as follows: 

1. Faster calculations are made possible. 
2. A more responsive system is created. 

3. Different processors can be utilized for different 
tasks. 

In the future, we expect thread and process parallelism to 
become widespread for two reasons: the nature of the 
applications and the nature of the operating system. 
Researchers have therefore proposed two alternative micro 
architectures that exploit multiple threads of control: 
simultaneous multithreading (SMT) and chip multiprocessors 
(CMP). 

Chip multiprocessors (CMPs) use relatively simple single-
thread processor cores that exploit only moderate amounts of 
parallelism within any one thread, while executing multiple 
threads in parallel across multiple processor cores. 

Wide-issue superscalar processors exploit instruction level 
parallelism (ILP) by executing multiple instructions from a 
single program in a single cycle. Multiprocessors (MP) exploit 
thread-level parallelism (TLP) by executing different threads 
in parallel on different processors. 

3  PROPOSED ARCHITECTURE 
 The Proposed Embedded Multiprocessor Architecture uses 
a new interface called ARISE interface to integrate the 
Embedded Processors. This is done by assigning one or more 
pipeline stages of the ARISE Interface to the corresponding 
pipeline of the processor. In this model, three processors are 
used with different functions, that is, integer operations, 
load-store operations and a VLIW (Very Long Instruction 
Word) processor, which is controlled by SDRAM control unit. 
   

   

 
Fig.1.Proposed Block Diagram 

 
The instructions that are executed from the control unit are 
fed into the processor. The core processor contains a decoder 
called ARISE Instruction Decoder, which is used to determine 
the type of instruction that is executed. 
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Instructions are pre-decoded by this Decoder to determine 
their type (CP or ARISE instructions) and they are issued to 
the CP or to the interface. Utilizing the Opcode- to-Id Table, 
the opc field, which has limited bit-width, is assigned to a 
unique  identifier,  Id,  which  can  be  of  arbitrary  size.  The  Id  
specifies an ARISE operation implemented on a CU 
(Computing Units). The table also allows the dynamic (at 
execution time) reassignment of the opc to an Id. Thus, the 
same opc in an ARISE instruction can be assigned to different 
ARISE operations alleviating in that way the Opcode space 
explosion problem. Also, the assignment of opc to ARISE 
operations is not fixed. Thus, new CUs and ARISE operations 
can  be  easily  included  assigning  each  operation  to  an  Id.  In  
that way, the modularity and scalability of the machine is 
enhanced. Since an ARISE operation can be referenced 
through the opc, which is encoded in the instruction word of 
the processor, the control communication overhead is 
minimized. 

The IOB provides temporary storage space for the operands 
of an ARISE operation. It is exploited (through a sequence of 
move instructions) to support operations with more operands 
than the CP’s register file provides/accepts per instruction. It 
is  also  configured  to  utilize  the  complete  bandwidth  of  the  
register file. Thus, the operand limitation problem is 
addressed with minimum data communication overhead 
(without considering the case of increasing the register file 
ports). 

The wrapper controls the configuration and execution of an 
ARISE  operation.  It  also  serves  the  memory  accesses  of  the  
CUs through the CP’s memory ports. Moreover, it is used for 
storing the ARISE configuration bit stream for each 
operation. 

4  ARISE INTERFACE 
Aristotle Reconfigurable Instruction Set Extension (ARISE) 
framework is a systematic approach, that is used to extend 
the processors to support any number and type of computing 
Units. The ARISE interface has three parts: (1) The control 
unit, (2) The Opcode-to-Id table, (3) The input/output buffer 
(IOB).  

To incorporate the ARISE interface, the pipeline of the Core 
Processor is  easily integrated with the Pipeline of  the ARISE 
Interface. The interface can stall the CP and block interrupts. 
To  pre-decode  an  instruction,  the  Fetch  stage  of  the  CP  is  
extended by the ARISE instruction decoder, which produces 
the ARISE and CP instruction words and forwards them to 
the PRE and ID stages, respectively. At the PRE stage, based 
on the received instr value, the ARISE Control Unit generates 
the control signals for all ARISE components. 

 

 
Fig.2. ARISE Interface 

The Opcode-to-Id table holds the assignment between the 
opc of an ARISE operation and the unique identifier, Id, of 
the operation. However, the bit-width of the field is limited. 
Hence, only a limited number of different ARISE operations 
can be supported (N operations). To overcome this, the Id 
value is  used to identify ARISE operations.  As the Id can be 
of arbitrary bit-width an “unlimited” number of operations 
(M operations with N  M) are supported. To port an 
operation to the ARISE machine, the designer only needs to 
associate it with a unique Id. Then, the wrapper is 
responsible to receive the Id and appropriately control the 
corresponding CU. 

The IO Buffer consists of two register banks. When an ARISE 
operation needs more operands than the register file 
provides, a sequence of move instructions (movta, movfa) 
reads and writes the operands to consecutive places in the 
banks. The data transfer between the CP and CUs is 
accomplished utilizing all ports of the register file, which 
results in fully exploitation of the register file bandwidth. 
Moreover, since the IOBs operate as pipeline registers, no 
extra latency is introduced. As a consequence, the operand 
limitation problem is resolved, while the communication 
overhead is minimized, under the consideration that the 
register file ports do not increase. 

The  wrapper  is  employed  when  a  new  Computing  Unit  is  
incorporated. It can be implemented as hardwired unit or 
hosted on the reconfigurable CU itself. It maps a range of Ids 
to the corresponding CU. Each ARISE operation 
implemented by this CU is identified by one of the above Ids. 
Also, the wrapper is responsible to: (1) Configure the CU and 
(2)  Control  the  execution  of  the  operations  implemented  on  
the CU. To accomplish this, the wrapper includes a table that 
holds the ARISE configuration bit stream for each operation 
implemented on the CU. This bit stream is divided into 
several words. The size of each word equals to the number of 
bits provided per cycle by the memory. 

The Configuration Controller of the wrapper undertakes the 
control and starts fetching the configuration bitstream from 
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the memory. The words of the bitstream are stored in 
consecutive  (between  start  and  end  addresses)  places  in  
configuration memory allowing the configuration controller 
to produce their addresses. The first part of the bitstream is 
the ARISE configuration bitstream which the Configuration 
Controller stores in the table. The rest is the configuration 
bitstream for the reconfigurable CU and it is forwarded to the 
CU without storing it in the wrapper. 

The control the execution of an operation in the wrapper is 
accomplished by the Execution Controller based on the 
ARISE bitstream. The Execution Controller performs the 
following actions: 1) identify if the latency (cycles) of the 
operation is provided or not; 2) stalls the CP for the number 
of cycles, if they are provided; otherwise stalls the CP until 
the CU signals the completion of the operation; 3) sets the 
ARISE Status Register; and 4) blocks interrupts to CP as it is 
specified in the ARISE configuration bitstream. Also, the 
wrapper serves the memory access requests by CUs. 
Specifically, a CU provides the address of the data memory 
that  needs  to  access.  If  the  ARISE  operation  is  executed  in  
concurrent mode and the CP has also requested a memory 
access, the CP is stalled. The corresponding data are directly 
accessible by the CU. Thus, an ARISE operation can be ported 
to a CU irrespectively of the implementation technology. 

To utilize the CUs, the processor’s ISA is extended once with 
a set of specific instructions, called ARISE instructions, which 
control: (1) The execution of the ARISE operations on the 
CUs, (2) The data communication between the CP and the 
CUs, (3) The configuration of the CUs. All ARISE instructions 
have the same format that includes three fields. These fields 
define: (1) The ARISE instruction (instr), (2) The Opcode (opc) 
of an ARISE operation, (3) The Operands of the instruction. 
To  extend  the  CP’s  ISA  with  ARISE  instructions  these  fields  
are encoded in the instruction word of a CP as shown in Fig. 
3. As an example, a processor’s instruction word format is 
assumed of  which only one opcode,  of  the available ones of  
the CP, is reserved for all ARISE instructions. The secondary 
field sec is used to encode both the instr and opc fields, while 
the operands fields are the same. The operands of an ARISE 
instruction are accessed via the register file of the CP. It 
should be noted that the instruction word format in Fig. 3 is 
typical for embedded processors, like ARM, MIPS, and 
PowerPC. Therefore, the extension is similarly possible for a 
wide range of embedded processors. 

 
  

 

 

 

 

Fig.3.Encoding of the ARISE instruction word 

The interface is organized in a pipeline structure, which was 
designed to easily extent the pipeline of the CP. Specifically, 

in  an  embedded  processor  each  instruction  is  executed  in  
three logic stages which are:  

 The pre-processing (PRE) stage, where the instructions 
are decoded and the operands are fetched, 

 The processing (PRO) stage, where the operands are 
processed, 

 The post-processing (POST) stage, where the results are 
send back to the register file.  

Similarly, the pipeline of the ARISE interface follows the 
previous approach. Thus, the ARISE pipeline can be easily 
integrated to the pipeline of the processor by assigning one or 
more pipeline stages of the processor to the corresponding 
ARISE pipeline stage. Thus, the ARISE interface be easily 
integrated even to processors with deep pipelines. 

5  CONCLUSION 
Embedded Multiprocessors are used for the areas where 
fastest calculations, more responsive and performing 
different tasks are needed. Therefore, an Architecture for 
Reconfigurable Embedded Multiprocessor had been 
proposed with the help of ARISE interface using FPGA. With 
which, Asymmetric multiprocessors can be developed and 
any number of processors can be added to the core processors 
using  this  interface.  Bit  conversion  is  also  possible  between  
different processors through the ARISE interface. 
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