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Abstract— A pseudo-homogeneous model was developed for f ixed bed catalytic styrene monomer reactor based on the reaction 

mechanisms and mass and energy balance equations. With the proposed mathematical model, the profiles of ethyl benzene conversion, 

styrene yield and selectivity were achieved through the length of catalytic bed reactor. Good agreement was found between model results 

and industrial data. The effects of some input parameters such as the molar ratio of the steam to ethyl benzene in the feed (S/E) and inlet 

temprature were investigated on f inal conversion of  ethyl benzene and styrene selectivity using proposed mathematical model. USING THE 

RESULTS OF mathematical model, a three-layer perceptron neural network was developed for simulation of the effects of feed composition 

and operation condition on conversion and selectivity. The optimum structure of neural network was determined by a trial-and-error method 

and different structures were tried. 

Index Terms— Artif icial Neural Netw ork, Fixed bed catalytic reactor, Mathematical modeling, Styrene monomer 

——————————      —————————— 

1 INTRODUCTION                                                                     

tyrene is one of the simplest and most important mono-
mers produced worldwide, and finds major use in the 
production of polystyrene, acrylonitrile/butadiene/styrene 

resins (ABS), and various miscellaneous polymers in the pe-
trochemical industry [1]. Styrene produced commercially by 
catalytic dehydrogenation of ethyl benzene, which firstly pre-
sented in 1869 by Berthelst. Recently, optimal design and op-
eration of the styrene reactor needed, as it is the critical 
equipment in the styrene manufacturing process. 

Dehydrogenation reaction of ethyl benzene is equilibrium, 
endothermic reversible reaction and thermally proceeds with 
low yield but catalytically with high yield such as iron oxide 
and supper heated steam [2]. This reaction strongly depends 
on temperature and pressure conditions and the favorite con-
ditions for it is high temperature and low pressure. In addition 
to dehydrogenation of ethyl benzene to styrene reaction, a set 
of parallel endothermic reactions can occur that lead to ben-
zene and toluene production. These competitive endothermic 
reactions cause decrease of styrene yield. Therefore an optimal 
operating temperature must be selected to achieve high con-
version of ethyl benzene to styrene [3]. Additionally, selectivi-
ty of catalyst for conversion  of ethyl benzene to styrene must 
be considered. Generally, yield and selectivity of styrene mo-
nomer can be influenced by some parameters such as tempera-

ture, pressure, molar ratio of the steam to ethyl benzene in the 
feed and selectivity of catalysis. Conversion of ethyl benzene 
and selectivity of the styrene increases with increasing of tem-
perature, pressure and molar ratio of steam to ethyl benzene 
in the feed [4]. 

Many studies on kinetics, reactor modeling, simulation and 
optimization of the styrene reactor have been reported. More 
than 50 years ago, Wenner and Dybdal [5] obtained rate data 
from experiments for two types of catalysts. Sheel and Crowe 
[6] determined rate coefficients and heat of reactions from the 
industrial data of an adiabatic styrene reactor using a pseudo-
homogeneous model. They obtained the best kinetic model by 
calibrating several models using catalyst manufacturers’ data. 
The kinetic model proposed by Sheel and Crowe has been 
widely used by most researchers for simulation and optimiza-
tion of industrial reactors [7-9]. Elnashaie et al. developed a 
heterogeneous model based on the dusty gas model [9]. They 
used the model to extract intrinsic kinetic data from industrial 
data iteratively. In another paper, Abdalla et al. reported in-
trinsic kinetics for three promoted iron oxide catalysts using 
pseudo-homogeneous and heterogeneous models, and com-
pared the performance of these catalysts [4]. 

In the present work, results of mathematical modeling of 
styrene monomer production process were reported. With this 
pseudo-homogeneous model, the profile conversion of ethyl 
benzene and steam, styrene yield and selectivity, temeperature 
and pressure were achieved through the length of catalytic 
fixed bed reactor and were compared with an industrial reac-
tor as a case study. The best molar ratio of the steam to ethyl 
benzene in feed has been investigated for optimal conversion 
of ethyl benzene and styrene selectivity. Using results of ma-
thematical model, an Artificial Neural Network model has been 

developed for simulation of the effects of feed composition. 
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TABLE1 
 Kinetic Equation And Frequency Factors And Activation Energy Of Ethylbenzene Dehydrogenation 

Num Reaction Reaction rate Ai 

Ei×10-5 
(j.mol-1) 

1 C6 H5 CH2 CH3          C6 H5 CHCH2 + H2            
      

   
   8.32×103 0.909 

2 C6 H5 CH2 CH3             C6 H6 + C2 H4          4.29×109 2.80 

3 C6 H5 CH2 CH3+H2        C6 H5 CH3+CH4            
 6.13×102 0.915 

4 2H2O + C2H4           2CO + 4H4          
    

    3.95×102 1.040 

5 H2O + CH4           CO + 3H2          
     1.42×102 0.675 

6 H2O + CO             CO2 + H2     
  

  
    

    
    5.82×1012 0.736 

            
  

      

            

                                                   
 

   
  

2 EXPERIMETAL 

2.1 Proccess Description 

In styrene monomer reactor fresh ethyl benzene mixed with 
recycled ethyl benzene and steam is preheated using the 
product stream from the reactor, and then mixed with the su-
perheated steam to reactor inlet temperature of over 875 K 
before injecting into the fixed bed catalytic reactor [10]. Super-
heated steam provides the necessary heat of reaction and pre-
vents coke formation, reduces partial pressure of styrene and 
hydrogen to shift the thermodynamic equilibrium in favour of 
the styrene production [9, 10]. The reactor effluent is cooled to 
quench all reactions in several heat exchangers, and then di-
rected to the separator to recover styrene. 

Six main reactions occur in styrene reactor. Rate equations 
and frequency factors and activation energy of those reactions 
are listed in Table 1 [6]. The kinetic constants of the reactions 
are expressed by Arrhenius equation. Dehydrogenation of 
ethyl benzene (Eq. (1)) is an endothermic reversible reaction, 
and proceeds thermally with low yield but catalytically with 
high yield. As it is an endothermic reaction producing two 
moles of product with one mole of reactant, low pressure and 
high temperature favour forward reaction producing styrene. 
The competing reactions, (Equations (2) and (3)) degrade ethyl 
benzene to by-products such as benzene and toluene, thus 
reduce styrene yield [6]. As the rate of formation of by-
products increases with temperature, an optimal operating 
temperature is necessary to compromise between conversion 
of ethyl benzene to the styrene and by-product formation. 
Moreover, a selective catalyst is desirable to achieve high sty-
rene yield at the low temperature and to minimize side reac-
tions. 

2.2 Development of Models 

For modeling of styrene monomer reactor, assuming a plug 
flow reactor was employed. Heat and mass transfer as well as 
diffusion in catalyst pellets were lumped in the rate constants. 
Catalyst activity is considered to be constant because of lack 

the available data, even though it varies with time and reactor 
length, also steady state conditions are considered. Thus, the 
model is a pseudo-homogeneous model and reactor is consi-
dered single phase. Since in the multi-phase reactor, molar 
flow rates of components are preferred rather than molar frac-
tions, mass balance equations are written based on molar flow 
rate of components.  
   

  
               (1) 

Where i represent components; The energy balance equa-
tion for adiabatic operation is given by equation (2). Relation-
ship of partial pressure and molar flow rate of components 
with the assumption of ideal gas is given by equation (3). 

  
    

               
 
 

        
   (2) 

    
  

  

                          (3) 

The Ergun equation (4) is used to compute pressure profiles 
along the reactor. 
  

  
       

       

      

  
          

  

             (4) 

            
        (5) 

Density of gases with the assumption of ideal gas is given in 
equation (5). Viscosity of the mixture of gas in catalyst bed is 
calculated by Chapman-Enskog theory (equation (6)). 
                                            

             (6) 
The characteristics of the industrial reactor at Polymer Corpo-
ration, Ontario, Canada are given in Table 2 [4]. 

3 RESULTS AND DISCUSSION 

The differential Equations of reactor model (1-6) were numeri-
cally solved using MATLAB. The set of differential equation is 
solved with Runge-Kutta-Verner fourth and fifth order me-
thod with variable step size. Fig. 1 shows ethyl benzene con-
version, styrene yield and selectivity profiles through the 
length of the reactor.  
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TABLE 2 
Industrial Reactor Specifications, Catalyst Properties And 

Feed Conditions 

 Value Dimension 
Reactor diameter 1.95 m 
Catalyst bed depth 1.70 m 
Catalyst density 2146.27 kg/m3 
Catalyst diameter 4.7 mm 
Catalyst pore radius 2400 Å 
Catalyst porosity 0.35  
Inlet pressure 2.0 Bar 
Inlet temperature 922.59 K 
Inlet Ethylbenzene molar flow 
rate 

36.87 Kmol/h 

Inlet Styrene molar flow rate 0.67 Kmol/h 
Inlet Benzene molar flow rate 0.11 Kmol/h 
Inlet Toluens molar flow rate 0.88 Kmol/h 
Inlet Steam molar flow rate 453.10 Kmol/h 
Total molar feed 491.63 Kmol/h 
Total mass flow 12238.79 Kg/h 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1: a) Ethyl benzene conversion, b) styrene yield and c) selectivity 

profile through the length of the reactor  

 
The results of pseudohomogene-

ous model and industrial reactor are compared in Table 3. The 
simulation results of the reactor give ethyl benzene conversion 
and styrene yield of 42.11% and 40.41% respectively. This indi-

cates that the selectivity for styrene production from ethyl 
benzene is 95.85%. According to this table it is concluded that 
except in the case of benzene, results are close to the values of 
the industrial reactor, and the error is negligible. 

There have been many attempts to improve the productivi-
ty of the dehydrogenation reactor system. Early researchers 
were interested in the reaction mechanisms of ethyl benzene 
dehydrogenation and mathematical modeling of industrial 
dehydrogenation [10-13]. Prediction of reactor dynamics and 
variation of some output against variation of some inlet para-
meters in industrial sites is very difficult because observation 
of reactor variables is limited, so trial and error tests require a 
lot of time and cost. Mathematical models using plant data are 
inadequate for describing reactor dynamics [15]. To predict 
some of the outputs against variation of some input parame-
ters such as the molar ratio of the steam to ethyl benzene in 
the feed (S/E) and inlet temperature we proposed an alterna-
tive hybrid model. This model is composed of proposed pseu-
do-homogeneous mathematical model and a neural network 
model. 

 
TABLE 3 

Comparsion of the Results of Model And Industrial Reactor 

  Industrial reactor model  E% 

M.F.R Conv. M.F.R Conv.  

Ethyle 

benzene 

19.45 47.25 21.31 42.11 10.87 

steam Not 

availeble 

Not 

availeble 

449.9 0.707  ----

 M.F.R Yield M.F.R yield  

Styrene 15.57 40.41 14.91 40.45 0.098 

Benzene 1.50 3.77 2.15 3.26 13.52 

Tholuene  2.03 3.12 1.75 2.98 4.48 

Temprature  850 851.77 0.20 

Pressure  2.32 2.207 4.87 

M. F. R. : Molar Flow Rate 

Conv. : Conversion 

 
Fig. 2 shows the results of proposed mathematical model 

for effect of the variation of S/E in fixed inlet temperature (900 
°C) on conversion of ethyl benzene and styrene selectivity. 
According to Fig. 2, it can be seen by increasing of S/E in fixed 
inlet temperature; conversion of ethyl benzene increases firstly 
with a sharp slope finally becomes almost constant in the ratio 
of 100. The effect of the increasing of S/E on operation of fixed 
bed catalytic reactor can be expressed in three ways. Firstly, 
steam as a diluting agent reduces partial pressure of styrene 
and hydrogen to shift the thermodynamic equilibrium in favor 
of styrene production. Secondly, superheated steam provides 
the necessary heat of endothermic reactions. Thirdly, super-
heated steam prevents coke formation and catalyst deactiva-
tion [11]. 

Fig. 2 shows that the selectivity of styrene with the varia-
tion of S/E has an optimal value as in the molar ratio 14.2 max-
imum value of styrene selectivity can be achieved. Fig. 3 
shows the profile of effect of the inlet temperature in fixed S/E 
(14) on conversion of ethyl benzene and selectivity of styrene. 
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Fig. 2: a) Ethyl benzene conversion, b) Styrene selectivity profile against 

S/E 

 
According to Fig. 3 with the increase of inlet temperature, the 
rate of the endothermic reaction such as dehydrogenation of 
ethyl benzene will be increased. Consequently the conversion 
of ethyl benzene will be increased with increasing of inlet 
temperature. According to Fig. 3 it can be seen that the selec-
tivity of styrene in temperature range of 500 – 750 °C is fixed 
at the maximum amount. However the selectivity of styrene 
will be reduced in the higher inlet temperature. Consequently, 
an optimum value of the inlet temperature should be selected 
to obtain the highest conversion of ethyl benzene and styrene 
selectivity. According to the results of mathematical model, 
inlet temperature between 850 °C to 950 °C is the best temper-
ature to get the highest conversion and selectivity. 
In recent years, the concept of neural networks has gained 
wide popularity in many fields of chemical engineering such 
as dynamic modeling of chemical processes [15, 16], design of 
catalysts [17], modeling of chemical reactors [18, 19, 20] and 
modeling of the complex chemical process [21, 22, 23]. In this 
research, in order to simulate the styrene monomer produc-
tion reactor and predict the response of the reactor against 
changes of operation condition such as S/E and inlet tempera-
ture, the arrays of appropriate three-layer neural networks 
have been designed with different number of in hidden layer 
neurons and network training algorithm. The network in-

cludes one input layer which provides input data to the net-
work, a hidden layer and an output layer that represents net-
work response.  
The number of input and output nodes is governed by func-
tional requirements of ANN. The number of input neurons 
corresponds to the number of operational condition that con-
tains the S/E and inlet temperature. The number of output 
neurons corresponds to the number of response that contains 
conversion of ethyl benzene and selectivity of styrene. A sig-
moid transfer function used for the hidden layer and output 
transfer function was a linear function. 
Training of designed ANN was performed using results of 
proposed mathematical model in changes of S/E and inlet 
temperature. Since used transfer function of hidden layers is 
sigmoid, we scaled all input vectors in the interval [0, 1]. The 
data were split in three subsets: training, validation and test 
set. Splitting of samples plays an important role in evaluation 
of an ANN performance. The training set is used to estimate 
the model parameters and the test set is used to check the ge-
neralization ability of the model. In this work, 480 data were 
prepared with changing of S/E and inlet temperature using 
mathematical mode. The training, validation and test sets in-
clude 288 data (60% of total data), 96 data (20% of total data) 
and 96 data (20% of total data), respectively. 
 

Fig. 3: a) Ethyl benzene conversion, b) Styrene selectivity profile 

against inlet temprature  

 
It is recognized that the selection of neurons in the hidden 
layer and training algorithm can have a significant effect on 
network performance. In this paper, we tried two steps to ob-
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tain the optimum model of ANN. In first step, we test different 
number of neurons in the hidden layer and then, the best de-
sign of layers of ANN was considered for the variation of 
training algorithms such as gradient descent backpropagation 
(gd), gradient descent with adaptive learning rule backpropa-
gation (gda), gradient descent with momentum backpropaga-
tion (gdm) and Levenberg-Marquardt backpropagation (lm). 
The mean squared error (MSE) for test set was used as the er-
ror function. 

In the first step, many networks with different neurons in hid-
den layer were trained with the Levenberg-Marquardt back-
propagation algorithm. Table 4 shows the performance (MSE 
for training and test sets) of designed network with different 
neurons in hidden layer. It was found that the network with 
three neurons in hidden layer has the MSE less than other 
trained networks. The MSE was 3.48e-10 for training set and 
4.63e-8 for test set. 
 

 
TABLE 4 

 Comparison of the Performance of Different Designed Network 

num topology Number of 
epoch 

Training  
 algorithm 

MSE for training set  MSE for test 
set 

R2 

1 2-1-2 1000 lm 2.4×10-5 1.8×10-4 0.9801 

2 2-2-2 1000 lm 1.2×10-6 2.5×10-6 0.9745 

3 2-3-2 1000 lm 3.48×10-10 4.63×10-8 0.9908 

4 2-4-2 1000 lm 2.1×10-8 4.1×10-6 0.9815 

5 2-5-2 1000 lm 4.7×10-5 1.3×10-5 0.9600 

6 2-6-2 1000 lm 3.4×10-3 5.87×10-3 0.9026 

7 2-3-2 1000 gd 1.56×10-6 4.16×10-5 0.8794 

8 2-3-2 1000 gda 1.4×10-5 2.8×10-4 0.9178 

9 2-3-2 1000 gdm 1.89×10-5 1.63×10-5 0.8165 

 

Fig. 4: Comparsion betw ean results of mathematical model and ANN prediction of Ethyl benzene conversion 

 

Fig. 5: Comparsion betw ean results of mathematical model and ANN prediction of Styrene selectivity 
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In second step, an ANN with three neurons in hidden layer 
was considered for the variation of the training algorithm. In 
Table 5, the performances (MSE for training and test sets) of 
designed network with the different training algorithm are 
listed. It was found that a network with the Levenberg-
Marquardt backpropagation algorithm has the MSE less than 
other trained networks. To test the accuracy of ANN model, a 
comparison is made between mathematical model and ANN 
results. Figs. 4-5 show a comparison between mathematical 
model results and predicted values of the results, using the 
optimum neural network model with three neurons in the 
hidden layer and Levenberg-Marquardt backpropagation al-
gorithms. These results confirm that the neural network model 
can predict adequately the conversion of ethyl benzene and 
selectivity of the styrene in the styrene reactor under different 
feed conditions. 

 

4 CONCLUSION 

The pseudo-homogeneous model of styrene monomer produc-
tion reactor was formulated and numerically was integrated 
with Runge-Kutta-Verner fourth and fifth order method using 
MATLAB. The profile of effects of some important parameters 
in the reactor was found by pseudo-homogeneous mathemati-
cal model. The results of the proposed model compared to an 
industrial reactor that was very similar. The proposed mathe-
matical model was used for calculation of the output of the 
reactor against variation in S/E and inlet temperature. Accord-
ing to the results of the proposed model, with increasing of 
S/E, the conversion of ethyl benzene increases but the selectivi-
ty of styrene decreases. The selectivity of styrene has an op-
timal value in S/E =13.5-14.5 and inlet temperature between 
850 °C to 950 °C is the best temperature to get the highest con-
version and selectivity. THEN a three-layer perceptron neural 
network, with two input nodes, three neurons in hidden layer 
and two neurons in output layer and Levenberg–Marquardt 
training algorithm, was developed for simulation of the effect 
of feed composition and operation condition on conversion 
and selectivity. These results confirm that the designed neural 
network model is able to predict the conversion of ethyl ben-
zene and selectivity of styrene in the styrene reactor under 
different conditions. 

4 SYMBOLS 

Sym. definition dimension 

Ri  reaction rates for ith compo-
nent 

kg mole/s kg catal 

k kinetic constants for ith com-

ponent 

kmol.kg catal-1 h -1 

barn 

KEB  equilibrium constant for sty-
rene formation 

Without dimension 

pi partial pressure for ith bar 

P total pressure bar 

T temperature K 

Fi flow rate  of component ith kmol.h-1 

Ft total flow rate kmol.h-1 

ρc density of catalyst kg.m-3 

ρg  density of gas mixture kg.m-3 

µg  viscosity of gas mixture kg.m-1 s -1 

Cpi Molar heat capacity of compo-
nent ith 

kJ kmol -1 K -1  

Mi Molecular mass of  component 
ith 

kg/kmol 

A cross-sectional area of reactor m2 

l length of reactor m 

ΔHi heat of reaction ith kJ.kmol-1 

ε porosity of catalyst Without dimension 

dc diameter of catalyst particle m 
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