
International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Methodologies to Amalgamate

Artificial Intelligence and Software Engineering
Charu Khatwani

Abstract— Software Engineering (SE) and Artificial Intelligence (AI) are the two different disciplines that have developed without much

indulgence with each other. The intersection between these two disciplines is currently rare but growing at an enormous rate. Merging the

concepts of these two trades can take us to a whole new world of automated systems where human effort is minimized. These systems are

Intelligent Systems because they not only develop efficient programs but also learn from past experiences.

This paper intends to study the techniques developed in AI from the standpoint of their application in SE. One such effort is to improve the

incremental approaches in SE with the intelligence possessed by Artificial Systems. In particular, the AI systems tend to be built

incrementally – an evolutionary paradigm is used. The essence of these incremental methodologies is captured in the notion of RUDE

cycles and its modifications. Through these software systems must strive to construct programs which are understandable and this means

that programs must be built ―in the image of the human mind.‖

Index Terms— Knowledge-based Systems, Malleable Software, OSCON interface, Software Development Life Cycle, Waterfall Model.

——————————  ——————————

1 INTRODUCTION

rtificial Intelligence is the area of computer science
focusing on creating machines that can engage on
behaviors that consider human intelligence. The dream of

smart machines since decades has now become a reality
through Artificial Intelligence. It aims to improve machine be-
havior in tackling complex tasks.

Software engineering is that form of engineering that applies

the principles of computer science and mathematics to achiev-
ing cost-effective solutions to software problems. Thus, Soft-
ware Engineering is about creating high-quality software in a
systematic, controlled, and efficient manner.

The goal of this research paper is to bring the two ends to-

gether to make a robust, reliable and well defines skeleton of
conventional software. To this framework we can attach the AI
muscles that will provide greater power to the overall system
but need to be closely confined and controlled if they are to be
developed effectively.

2 ARTIFICIAL INTELLIGENCE SOFTWARE

 “An evolutionary paradigm”

 The AI Software provides us with the conventional software

skeleton with the AI muscles making it reliable, robust and

automated. This is based on the various paradigms and me-

thodologies.

2.1 RUDE CYCLE

The AI systems tend to be built incrementally. The essence of
these incremental methodologies is captured in the notion of
RUDE cycle.The fundamental elements of all incremental sys-
tem development procedures are:

 Run the current version of the system.

 Understand the behavior observed.

 Debug the underlying algorithm to eliminate unde-

sired be havioral characteristics and introduce miss-
ing, but desired, ones.

 Edit the program to introduce the modifications de-

cided upon.

There are certain questions associated with the RUDE cycle.

2.1.1 How do we START?

We can construct a first version of the proposed AI software in
much the same way as we construct prototype systems in
conventional software engineering. We are aiming only for a
software system that is an adequate approximation to the ini-
tial problem, and adequacy is primarily a behavioral characte-
ristic.

A

————————————————

 Charu Khatwani is currently pursuing bachelors degree program in Com-
puter Science and engineering from S.R.M.S.W.C.E.T under Uttar Pra-
desh Technical University, India, PH-919690687458.
E-mail: charukhatwani@gmail.com

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Our AI-system prototype is thus not a prototype at all: it is a
first version of what will subsequently become an adequate,
practical AI system.

Fig. 1. The RUDE Cycle.

 A major requirement of the first version system is that it
should be readily modifiable. A second crucial requirement is
that it does run.

Thus, we aim to form a Malleable Software. Malleability, as a
characteristic of software systems, has two main aspects: we
must be able to understand the working of the system and
hence make good judgments about what changes to introduce;
and the system must exhibit a maximum of functional de-
coupling—so that the identified change can be introduced
with minimal effect on other sub functions that we do not
wish to modify.
These two aspects are both supported by a modular approach
to system design.

2.1.2 How do we PROCEED?

Let’s assume that we have our first version of software up and
running on a computer system.
The task now is to understand the behavior and modify the
current version to give a more appropriate subsequent ver-
sion.
But the Second Law of Program Evolution states that—

“As a large program is continuously changed, its complexity,
which reflects deteriorating structure, increases unless work is
done to maintain or reduce it.”

This is clearly depicted by the figure below—

 Fig. 2. Software System complexity as a function of succes-
sive modification from Lehman and Belady,1985, pg 387.

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

A key to locking out the bad influence of the second law of
program evolution is to introduce modifications at the highest
level possible in the design structure of the system. When we
have analyzed a problem and understood the fault in the cur-
rent version, we do not dive into the code and modify it (un-
less the fault is a trivial code-level fault). What we should do is
go back to the design documentation and determine where
this fault was first introduced into the system—it may be a
basic design fault, it may be a fault in the detailed design, or it
may be simply a coding fault. When we have located the ori-
gin of the fault, we modify the system to “remove it at the
source.”

Having corrected the problem at its origin we must then re-
elaborate the changed design to determine the actual code
changes that it specifies. So, the program code does, of course,
become changed, but only as a result of a systematic redesign
of the modified system.

2.1.3 How do we FINISH?

The finishline of the cycle is addressed in the guise of ‘validating
expert system’. An expert system has to be validated (and some-
times verified—V&V) before it is fit any real use.

Verification confirms "we have built the system right"
Validation confirms "we have built the right system"

Validation is a stopping test.Successful validation is not necessarily
the cue for a full stop on the versioning cycle, it is more the sanc-
tioning of a move from experimental to real-world application.

2.2 WIZARD-OF-OZ

 The next enhancement of the RUDE cycle is Wizard-of-
Oz[4].It focuses on working of the prototype to the full as ear-
ly as possible by making .The system stubs active rather than
passive.

An undeveloped AI muscle (which supports the strong skele-
ton of Conventional Software) can be replaced by a 'hidden'
human who supplies, on demand, appropriate, intelligent in-
formation. More mature readers will recall the hidden human
who was in fact the 'brains' of the Wizard of Oz and hence the
name of this approach. The point of the 'hidden' Wizard is so
that the behavior of the prototype can be under normal condi-
tions—i.e, without system users reacting unnaturally to the
knowledge that there is another human 'in the loop.'
This proposal has yet to be evaluated comprehensively, but
has been employed with success in the development of the
OSCON interface to UNIX.

The general strategy of isolating the AI muscles from the ske-
leton proves the strong modular approach of the AI System.

First versions of the system can employ very basic, non-

heuristic rules in order to facilitate the construction of a strong
skeleton within which heuristic rules and even heuristic rea-
soning mechanisms can later be introduced.

As there is no control to the number of iterative procedures in
the RUDE cycle as well as Wizard-of-Oz so an improved me-
thodology termed ad POLITE methodology was introduced.

2.3 THE POLITE METHODOLOGY

 Bader, Edwards, Harris-Jones, and Hannaford [2]maintain
that "knowledge-based systems" (KBS) are not yet associated
with an accepted software development life cycle (SDLC)
They make the point that the major system development fea-
ture that KBSs bring to the fore is a necessity for iterative re-
finement, and the RUDE cycle explained above is a likely ba-
sis for the required methodology.

The two fundamental flaws are singled out for treatment: "an
engineering methodology for KBSs needs to provide a method
for constructing an initial system from which the RUDE cycle
can begin, as well as encompassing some form of control of
the iterative process of development."

Rather than correcting the two flaws stated above the POLITE
methodology merges the stuctured and controlled framework
with the iterative RUDE cycle.

They select the waterfall model of software development as
the "structured and controllable framework," and what was
RUDE (plus waterfall) becomes POLITE, which is derived
from:

Produce Objectives - Logical/Physical Design - Implement -
Test - Edit

and, as we all know, POLITE is always preferable to RUDE.
This is, of course, a slightly underhand way to introduce a
possible enhancement. (But one that the RUDE paradigm
seems to encourage—see, for a further example, Mostow's
[1985] Courteous alternative, and, as a counterexample, Tre-

nouth's [1990b] VERY RUDE development.)

This scheme is definitely waterfall based. The methodological
enhancements come with elaboration of the infrastructure. To
begin with: each step in the waterfall is now divided into two.

"The left side is related to conventional components and the
other side to the knowledge-based or cognitive elements of
the system''

For, as they state, the methodology as designed to deal "with
the development of hybrid systems comprising both conven-
tional and heuristic components".

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

WATERFALL MODEL(STUCTURED AND CONTROLLED

FRAMEWORK) + RUDE CYCLE

POLITE (PRODUCE OBJECTIVES - LOGICAL/PHYSICAL

DESIGN - IMPLEMENT - TEST – EDIT)

 Fig. 3. The POLITE Life-Cycle [2]

3 CONCLUSION

This paper tends to study and combine the various methodol-
ogies used in Artificial Intelligence using the techniques and
the different Software Development Life Cycle models in
Software Engineering. The essence of these incremental me-
thodologies is captured in the notion of RUDE cycles and its
modifications. It is a first attempt to study the various metho-
dologies of AI using SE and their improvements under one
root.

ACKNOWLEDGMENT

 I would like to appreciate Dr. Harshita Kumari for her help
with this paper. Her encouragement and long hours with
me in this effort are greatly appreciated. My thanks also go
to Er. Rati Agarwal for her foresight and involvement in
my research interest.

REFERENCES

[1] Balzer, Robert, Thomas E. Cheatham, Jr., and Cordell Green, (1983) "Soft-

ware Technology in the 1990's: Using a New Paradigm," IEEE Computer,

November, pp. 39-45.

[2] Partridge, D., (1991) A new guide to artificial intelligence, Norwood, NJ:

Ablex Publishing Co.

[3] Arango, G., Baxter, I. and Freeman, P. (in press) A framework for incre-

mental progress in the application of artificial intelligence to software engi-

neering, in D. Partridge (Ed.), Artificial Intelligence and Software Engi-

neering, Norwood, NJ: Ablex Pub. Corp

[4] Analysing coherence of intention in natural language dialogue by paul mc

kevitt, B.Sc. (Hons.) (Dublin), M.S. (New Mexico).

[5] Gilb, T. (1988) Principles of Software Engineering Management, Reading,

Mass.: Addison-Wesley.

