
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 17
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

MVC Software Design Pattern in Web
Application Development

Madiha Hameed, Muhammad Abrar, Ahmer Siddiq, Tahir Javeed

Abstract - Web applications that used design pattern have becomes popular because of their reusability and consistency and flexibility, Developer uses
design pattern to increase flexibility and due to its popularity as it proved as a best practice for developer to solve many problem occurs during
software/web application, but when some un-experience uses it, unfortunately they does not find desired result because of lack of experience in applying
them. This paper is intent to write to understand their proper use and will help to understand the design patterns, their categories, usage, and the
situation in which developer has to make right decision to select appropriate design pattern, key elements of design pattern, comparison of design
pattern and brief description of all design pattern, this paper also tell the mostly used design pattern during web application.

Index Terms – MVC (Model View Control), Design pattern, web application

 --------------------------------------- ------------------------------------

1 INTRODUCTION

In computer science design pattern is a proper approach of providing a
key of answers to a design problem in a particular area in proficiency.
[1]

Christopher Alexander says, "Each pattern describes a problem which
occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice".
The elements of this language are entities called patterns. Each
pattern describes a problem that occurs over and over again in our
environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice. [1]

1.1 Design patterns in software engineering
It is reusable solution in commonly occurring problem during software
development under certain circumstances, it is basically descriptions or
guidelines on how to solve a problems and can be used in different
situation according to your need or context, they are known as best
practice and the programmers must implement in applications [2]

1.2 Design patterns in development
Today design pattern is the need of almost every web application or
software because if programmers not follow the design patterns then
we can say that the application structure is not reliable because web
application developer need to overcome many challenges during web
development in order
to get the quality of service which including speed, scalability and
security.
Basically it provides tested, proven development paradigms that can
speed up development process [2] Design pattern help us to resolve or
fix issues that causes major problem in future or in implementation and
it improves code readability for experienced developers.
It is seen that numerous non web application have restructured as a
web based. Most common challenges are structuring of web
application, organizing and data handling. [2]

2 REASONS OF APPLYING DESIGN PATTERNS

♦ Reusability
♦ Best practices for developers as they well known of

terminologies
♦ Give problem oriented solution

3 DESIGN PATTERN CATEGORIES
There are 23 design pattern and these patterns are classified into
categories .They are divided into three parts Creational, Structural
and Behavioral patterns.

 tbl # 1

3.1 Scope of Categories

The term SCOPE specifies whether the pattern applies to class or
object. The pattern under the class label is those that focus on class
relationship and that are in object label are focus on the object
relationship. Class patterns deal with the relationship between classes
and their child classes and these relationships are made by inheritance
and almost all patterns use inheritance to some extent. Object patterns
deal with object relationships, which can be changed at run-time and
are more dynamic.[3]
Creational class patterns defer some part of object creation to
subclasses, while Creational object patterns defer it to another object.
The Structural class patterns use inheritance to compose classes,
while the Structural object patterns describe ways to assemble objects.
The Behavioral class patterns use inheritance to describe algorithms
and flow of control, whereas the Behavioral object patterns describe
how a group of objects cooperate to perform a task that no single
object can carry out alone.[4]

S# Category Description
1 Creational

Patterns
These design patterns hide the creation
logic while creation of object, rather than ins
tainting object using NEW operator. This
gives program more flexibility in deciding
which objects need to be created for a
given use case.

2 Structural Pattern These design patterns concern with the
class and object composition. Inheritance is
used in it in order to compose interfaces
and define ways to create object in order to
obtain new functionalities.

3 Behavioral
Patterns

These design patterns are specifically
concerned with communication between
objects.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 18
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

 Creational Structural Behavioral
Scope Class Factory

Method

Adapter Interpreter
Template
Method

 Object Abstract
Factory
Builder
Prototype
Singleton

Adaptor
Bridge
Composite
Decorator
Façade
Flyweight
Proxy

Chain of
responsibility
Command
iterator
Mediator
Memento
Observer
State
Strategy
Visitor

tbl # 2[2]

4 APPROPRIATE DESIGN PATTERN SELECTIONS

The harder thing is to understand what you exactly need and what is
your problem and which design pattern can fit in your needs to solve
your problem, actually it is possible to have more than one design
pattern for one problem, developer of the application has to select the
appropriate one. [5]
There is also some problems faced by developers who uses wrong
design pattern and thus causes problem.[5]
There are some steps also to select any design pattern for your
problem

1. The first thing is that you understand the pattern and make
sure you have completely understand it that what the
specific deign pattern does and what you what it to do and
then finally implement it in your code to solve problem

2. Get Specific: Now you have to map the generic pattern into
your specific problem, this need to update your participants
in the pattern to things that make sense in the context of
your application.[11]

3. Reorganize: When you adopt specific pattern it may need
to add, remove or reorganize classes and objects as well,
and if you are documenting your design using UML or other
related techniques then you will want to update the stuff for
the pattern reflection.

4. Implementation: This part is very easy because
programming with patterns becomes the easiest way, Now
you have to implement the pattern in the code, it becomes
very easy to write your code when you have clear model of
how you relate and interact objects and classes to each
other.[6]

 For understanding table is given with some problems with their
solution and recommended design pattern
Problem Solution Patterns
Your code depends on
the names of classes.
Changing the class of
an object is
burdensome because
the name of the class is
hard-coded in the client
program through
constructor invocations.

Do not use constructors
directly in your client
classes. Provide an extra
level of indirection to the
code that invokes the
constructor.

Abstract
Factory
Factory
Method
Prototype

Your code depends on
platform idiosyncrasies.
#ifdef and conditional
compilation only takes
you so far. Even Java's
vaunted platform
independence has a
few weak spots.

Isolate the platform-
dependent parts of your
program from the platform-
independent parts.

Abstract
Factory
Bridge

Your code depends on
specific methods in
specific classes.

Separate the request itself
from the object and/or
method that handles the
request.

Chain of
Responsibility
Command

Your code depends too This is more often a Abstract

closely on exactly how
an object is
implemented. Changing
the implementation of
the class forces change
on the client class.
Encapsulation isn't
airtight.

problem in C++ with its
pointers, pointer
arithmetic, and relatively
close access to the
machine than it is in Java.
Often the solution is to
wrap an additional layer of
interface around the
implementation.

Factory
Bridge
Memento
Proxy

Changing an algorithm
requires too many
changes in the classes
that use it, especially
changes that affect the
class's interface as well
as its implementation.

The algorithm should be
separated from the class,
and moved into a class of
its own.

Builder
Iterator
Strategy
Template
Method
Visitor

Classes are
excessively dependent
on each other. It's
difficult to change one
class without changing
most or all other
classes.

Separate classes with
additional levels of
indirection.

Bridge
Chain of
Responsibility
Mediator
Observer
Command
Façade

Sub classing is too
difficult.

Use object composition
and delegation instead.

Bridge
Chain of
Responsibility
Observer
Decorator
Composite,
Strategy

A class can't be
modified, either
because you don't have
its source code or
because too many
other classes depend
on it.

Use object composition to
embed an instance of the
class inside another class
that provides a new
interface. Delegate
requests to the embedded
object.

Adaptor
Decorator
Visitor

5 DESIGN PATTERN CONVENTION

Design Patterns have two main conventions in software development.

5.1Common platform for developers
Suppose developer writes program using some techniques prior to
design pattern so how the other developer came to know which
approach is used by developer to write code and how, so there was
also need for standard terminology that can be adopted by others
developers too, so design pattern becomes a common platform that
others developers also uses to solve their problems so Design patterns
become a standard terminology for developers because they are
specific for different circumstances.[10]

For example a singleton design pattern describes the use of single
object so all the developers know that singleton design pattern use the
single object (Not more than 1 object) and they can tell each other that
their program is following singleton pattern.[7]

5.2 Best Practices

Design patterns provide best solutions to certain problems faced
during software development. Design patterns have been used over a
long period of time and it also helps un-experienced programmers to
learn software or web application in an easy and faster way [8]

Creational Design Patterns
Singleton Ensure that only one instance of a class is created

and Provide a global access point to the object.
Factory Creates objects without exposing the instantiation

logic to the client and Refers to the newly created

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 19
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

object through a common interface.
Factory
Method

Defines an interface for creating objects, but let
subclasses to decide which class to instantiate
and Refers to the newly created object through a
common interface.

Abstract
Factory

Offers the interface for creating a family of related
objects, without explicitly specifying their classes.

Builder Define an instance for creating an object and allow
child class to decide which class should be
instantiate

Prototype Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this prototype.

Object Pool Creation of object is costly steps, to increase the
performance object pool reuses the object that are
expensive to create

Behavioral Design Patterns
Chain of
Responsibility

The objects become parts of a chain and the
request is sent from one object to another across
the chain until one of the objects will handle it.

Command Encapsulate a request as an object, It allows
saving the requests in a queue.

Interpreter Specifies how to evaluate sentences in a language.
It defines representation of language that is used to
evaluate(interpret) sentence

Iterator Easily manipulates collections of objects and keep
the track of objects that is iterated and to be
iterated

Mediator Define an object that encapsulates how a set of
objects interact, It promotes loose coupling by
keeping objects from referring to each other
explicitly, and it lets you vary their interaction
independently. Note: the Front Controller pattern is
a specialized kind of Mediator pattern that handles
all requests for a web application.

Observer It has one to many dependencies , if any object
changes then its related dependencies also
changes with change of state of object

Strategy It enables an algorithm's behavior to be selected at
runtime. It defines a family of algorithms,
encapsulates each algorithm, and makes the
algorithms interchangeable within that family.

Template
Method

Define Algorithm Skelton in an operation and allow
its child classes to change the behavior without
changes algorithm structure.

Visitor Defines an algorithm as an object that "visits" each
member of a aggregate performing an operation.

Null Object The Null Object Pattern provides intelligent do
nothing behavior, hiding the details from its
collaborators. Or Null Object is to encapsulate the
absence of an object by providing a substitutable
alternative that offers suitable default do nothing
behavior. In short, a design where "nothing will
come of nothing"

Memento It captures internal state of an object and later on
restore the object to that state

Structural Design Patterns:
Adapter Allows classes to support a familiar interface so

you can use new classes without refactoring old
code.

Bridge "Decouple an abstraction from its implementation
so that the two can vary independently".[5]

Composite Compose objects into tree structures to represent
part-whole hierarchies. / Composite lets clients
treat individual objects and compositions of objects
uniformly.

Decorator It add additional responsibilities dynamically to an
object and can simplify class hierarchies by
replacing subclasses.

Flyweight It use sharing to support a large number of objects
that have part of their internal state in common

where the other part of state can vary./ A flyweight
is an object that minimizes memory use by sharing
as much data as possible with other similar objects

Proxy It provides a “Placeholder” for an object to control
references to it. Or “Provides access to an object
through a surrogate object to allow for delayed
instantiation or protection of subject methods.”

 Tbl #3 [7]

5 DESIGN PATTERNS IN WEB APPLICATIONS
DEVELOPMENT

 Web application development is a vast field these days and growing
rapidly in business community regarding to its flexibility and availability
to everywhere at every time [14]

In design pattern introduced approaches there are three approaches
are the popular approaches to define web application structure

1. MVC
2. Factory
3. Abstract

As we already discuss the above mention three approaches

MVC (Model View Control) is the most popular approach in web based
application development it is flexible and provide the privilege of word
division in small chunks to handle them easily and manage the work
load in a team .It encourage the team work which is becoming the
need of this world as much as web development field is growing
among the non- IT people it become the necessary that software are
user-friendly and strong in security point

The Model view control approach provide the flexibility and reusability
of application structure

More rapidly growing mobile development is also use MVC for its
different display manner.

Fig # 1

CONCLUSION

Creational Patterns offer great flexibility in how your software's objects
are created. It is of great help to clearly understand these simple
starting point patterns with their pros and cons to efficiently extend and
maintain an application.

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Algorithm

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 20
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

MVC provide the user friendly design pattern and reusability of
application through its model base control and view to user. Its
successful response from user helpful for the web application
developers.

REFERENCES

1. C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-
King and S. Angel. A Pattern Language. Oxford University Press,
New York, 1977.

2. E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1996.

3. G. Rossi,D.Schwabe andF.Lyardet,"Improving Web Information
Systemswith Design Patterns". In Proc. of the 8th International
World Wide Web Conference, Toronto (CA), May 1999, Elsevier
Science, 1999, pp. 589-600.

4. D.C. Schmidt, R. E. Johnson and M. Fayad. "Software
Patterns". Communications of the ACM, Special Issue on Patterns
and Pattern Languages, Vol. 39, No. 10,

5. M.P. Cline, "Using Design Patterns to Develop Reusable Object-
Oriented Communication Software", Communication of ACM, 38
(10), October 1995, pp. 65-74.

6. Singh Sandhu, P.; Pal Singh, P.; Kumar Verma, A. "Evaluating
Quality of Software Systems by Design Patterns
Detection", Advanced Computer Theory and Engineering, 2008.
ICACTE '08. International Conference on, On page(s): 3 – 7

7. Krein, Jonathan L.; Pratt, L.J.; Swenson, A.B.; MacLean, A.C.;
Knutson, Charles D.; Eggett, D.L. "Design Patterns in Software
Maintenance: An Experiment Replication at Brigham Young
University", Replication in Empirical Software Engineering Research
(RESER), 2011 Second International Workshop on, On page(s): 25
– 34

8. Ohtsuki, M.; Yoshida, N.; Makinouchi, A. "A source code generation
support system using design pattern documents based on
SGML", Software Engineering Conference, 1999. (APSEC '99)
Proceedings. Sixth Asia Pacific, On page(s): 292 – 299

9. M. Fayad, W. Tsai, and M. Fulghum, "Transition to Object-Oriented
Software Development," Communications of the ACM, Jan. 1996.

10. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture - A System of Patterns.
Wileys and Sons, to appear 1996.

11. G. Booch, Object Oriented Analysis and Design with Applications (2
Edition). Redwood City, California: Ben-jamin/Cummings, 1993.

12. D. C. Schmidt and P. Stephenson, "Experiences Using Design
Patterns to Evolve System Software Across Diverse OS Platforms,"
inProceedings ofthe 9 European Conference on Object-Oriented
Programming, (Aarhus, Denmark), ACM,
August1995.

13. R. Johnson, "Documenting Frameworks Using Patterns," in OOPLSA
'92, (Vancouver, British Columbia), pp. 63-76, ACM, October 1992.

14. A. Hussey, D.Carrington, “Comparing the MVC and PAC
architectures: a formal perspective”, IEE Proceedings Software
Engineering, Vol 144, Issue 4, Page 224-36

IJSER

http://www.ijser.org/

	5 Design Pattern Convention
	5.1Common platform for developers
	5.2 Best Practices

	Creational Design Patterns
	Behavioral Design Patterns
	Structural Design Patterns:

