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Abstract— The flow of a viscous incompressible fluid of generalized second grade type between two infinite parallel plates embedded in a
porous medium has been studied here.  An analytical solution for the velocity field has been obtained utilizing integral transforms technique
in series form in terms of Mittage-Leffler function. The affect of fractional calculus and porosity parameters on the velocity field have been
illustrated graphically. The two limiting cases have been discussed as the results of the velocity field of the generalized second grade fluid.

Index Terms— Fractional derivative, finite Fourier sine transform, Laplace transform,  Mittage-Leffler function, porous medium, Riemann-
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1  INTRODUCTION
he viscoelastic fluid flow between two parallel plates
through a porous medium have attracted the attention of
number of researchers due to its vast applicability in dif-

ferent fields such as filtration and purification of crude oil,
petroleum industry, agriculture engineering etc. But it is diffi-
cult to suggest a single model which exhibits all the properties
of viscoelastic fluids. For this reason many models of constitu-
tive equations have been proposed by Mathematicians. During
the last few decades fractional calculus has encountered much
success in describing the viscoelasticity. In fractional calculus
approach the time derivative of integer order in the constitu-
tive equation is replaced by Riemann-Liouville fractional cal-
culus operator. Bose et al [1] have studied unsteady incom-
pressible flow of a generalized Oldroyed-B fluid between two
infinite parallel plates. Rajagopal and Gupta [2] have investi-
gated an exact solution for the flow of a non-Newtonian fluid
past an infinite porous plate. Tan and Xu [3] have considered
unsteady flows of a generalized second grade fluid with frac-
tional derivative model between two parallel plates. Bose and
Basu [4] have studied incompressible viscoelastic flow of a
generalized Oldroyed-B fluid through porous medium be-
tween two infinite parallel plates in a rotating system. Fetecau
et al [5] have studied unsteady flow of a second grade fluid
between two side walls perpendicular to a plate. Khan et al [6]
discussed exact solutions for some oscillating flows of a sec-
ond grade fluid with a fractional derivative model.
       In the present paper the viscoelastic flow of a generalized
second grade fluid through a porous medium has been con-
sidered. The exact solution for the velocity field is obtained
with the help of integral transform technique in series form in
terms of well known Mittage-Leffler function. The affect of
fractional calculus parameter and porosity parameter on the
velocity field have been illustrated graphically.
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2. GENERALISED FLUID MODEL AND BASIC EQUATIONS
The extra stress tensor for second grade fluid is given by the
constitutive equation

+ + + (1)
where,  is the Cauchy stress tensor,   is the hydrostatic

pressure,   is  the identity tensor,  is the coefficient of  vis-
cosity,  and  are normal stress moduli,  and are kin-
ematical tensors defined by

= + ( )                                           (2)

= + + ( ) (3)

   where  is the material derivative,  is the velocity
gradient. and , , satisfy the following conditions

0, 0 and + = 0 (4)
 For a generalized second grade fluid the equation (1) remains
same but is defined by

= + + ( ) (5)
is the Riemann-Liouville fractional calculus operator and

defined by

( ) =
1

(1 )
( )

( )
(0 < < 1) (6)

where (. ) is  Gamma function
If = 1 then equation (5) reduces to equation (3) and the con-
stitutive relationship corresponds to the case for ordinary sec-
ond grade fluid. If = 0, = 0, the constitutive relationship
corresponds to the case for Newtonian fluid.
The Equation of motion in absence of body forces is given by

= . (7)
where  is the fluid density  and  D/Dt is the material deriva-
tive.
The equation of continuity for incompressible fluid is given by

. = 0 (8)

T
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3  MATHEMATICAL FORMULATION AND SOLUTION
Suppose that a generalized second grade fluid be initially at
rest and occupies the space between two infinite parallel
plates at a distance d apart embedded in porous medium. As

> 0  the lower plate begins to move in its plane with velocity
U and due to the shear the fluid gradually moves. The x- and
y- axes are taken along and perpendicular to thedirection of
the plates respectively and z-axis is taken perpendicular to the
xy-plane.

Since the dimensions of the plates along the x- and z-
coordinate directions are infinite, all the quantities related to
the motion are functions of y and t only. For unidirectional
flow the velocity field will be of the form

= ( , )  (9)
where  is the velocity in the x-coordinate direction and de-
notes the unit vector in the x-coordinate direction.
Substituting the expression of velocity V from equation (9) in
Equations (1), (2) and (5) we obtain the shear stress compo-
nents

= =
( , )

+
( , )

(10)

                and = = = = = 0
Substituting the expressions of  and the velocity from
equations (9) and (10) respectively in Eqn (7) we get

( , )
= +

( , ) ( , )
(11)

where = /  is the kinematic viscosity , = /  ,  is the
permeability of the porous medium.

The boundary conditions can be written as
(0, ) = , ( , ) = 0 ( > 0) (12)

The initial condition is given by ( , 0) = 0 (0 < < 1)

Now we introduce the non-dimensional variables

= , = , = (13)
Then the governing equation in terms of the non-dimensional
variables can be written as (Dropping the sign ‘*’for simplici-
ty)

= 1 +
1

(14)

where =
( )

  and =
We consider the transformation ( , ) = ( , ) ( )  (15)

> 0
Then the Eqn (14) takes the form

= 1 +
1

[( ) ( , )] (16)

The boundary and initial conditions in terms of new variable
( , ) can be written as

(0, ) = 0 = (1, )
                              and ( , 0) = 1                                   (17)

Multiplying bothsides of the Eqn.(16) by sin  and then in-
tegrating bothsides of with respect to y from 0 to 1 and utiliz-

ing boundary conditions we obtain

( , ) ( ) 1 + ( , ) + ( , )       (18)

where ( , ) is finite Fourier sine transformation defined by

( , ) = ( , ) sin ( = 1,2,3, … … . )

Again Taking Laplace transformation of bothsides of the
Eqn.(18) and using ( , 0)  we get

( , )
1 1 + 1

1 + 1 + ( ) (19)

where = + ( ) and ‘p’is the Laplace trans-
form parameter
In  order  to  avoid  the  lengty  procedure  of  contour  integrals
and residues we rewrite the Equn. (19) as

( , )
1 1) !

! ( )!
( ) [ + ( ) ]

1 1)
( )

!
! ( )!

( ) [ + ( ) ] (20)

Where ( , ) = ( , )  is the Laplace transfor-
mation of ( , ).

Applying the inversion formulae term by term for the Laplace
transform, Eqn.(20) yields

( , )
1 ( 1) !

! ( )!
( )

( ) , ( )
( ) )

1 1)
( )

!
! ( )!

( )
( + 1) ,

( ) )

                                                                                                   (21)
where = ( )   and , ( ) = / ( + ) denotes
generalized Mittage-Leffler function. Here we have utilized
the following property

!
( ) = ,

( ) ± (22)

( ) > | |

Using inversion formula for finite Fourier sine transformation
we obtain from Eqn.(21)

( , )

= 1 2
sin ( 1) !

! ( )!
( )

( )

× , ( )
( ) 2

sin ( 1)
( )

×
!

! ( )!
( )

( + 1) ,
( ) (23)

where = ( )
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4 LIMITING CASES
Case I If = 1 the equation of motion (14) takes the form

= 1 +
1

(24)

Subject to the boundary and initial conditions given by
Eqn.(12) and the case corresponds to  Ordinary Second Grade
Fluid.
The velocity field is given by

= 1 2
sin ( 1) !

! ( )!
( )

( )

× ,
( )( ) 2

sin ( 1)
( )

×
!

! ( )!
( )

( + 1) ,
( ) ( ) (25)

Case II If = 0, = 0 the equation of motion is given by

=
1

(26)

subject to the boundary and initial conditions given by
Eqn.(12) and it corresponds to Newtonian Fluid.
The velocity field is given by

= 1 2
sin ( 1) !

! ( )!
( )

( )

× ,
( )( ) 2

sin ( 1)
( )

×
!

! ( )!
( )

( + 1) ,
( ) (27)

5  NUMERICAL RESULTS AND DISCUSSION
In Figure 1 the velocity u is plotted against the distance from
the lower plate, y for different values of the fractional calculus
parameter . The fluid velocity increases for higher values of
the parameter . The flow patterns are parabolic in nature.
Figure 2 displays the velocity profile u against y for different
values of the porosity parameter . From the figure it is
evident that  as  takes higher values the fluid velocity u
decreases. The parabolic flow pattern gradually becomes
linear for increasing values of the parameter  ,that is porosity
produces a  resistance in the flow field and the fluid velocity
decreases linearly towards the upper plate from the lower one
for  higher  values  of  .  Figure  3  depicts  the  velocity  profile  u
against t for  different values of the  parameter . As 
increases the fluid velocity decreases near the moving lower
plate. The fluid velocity curve becomes almost parallel for the
Ordinary Second Grade Fluid( that is the Case I we considered
earlier)compare to the other velocity curves. Figure 4 depicts
the velocity field against time t for different values of the
porosity parameter . As  increases the fluid velocity
decreases. Hence it is clear that the porosity of the medium

produces a resistance in the fluid velocity.

Figure 2: The velocity  is depicted against the distance
from the lower plate y for different values of the porosity
parameter         t=2, =0.2, =0.3
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 Figure1:  The velocity  is depicted against the distance
from the lower plate y for different values of fractional
calculus parameter        =5, t=2, =0.3
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6  CONCLUSIONS
The incompressible viscoelastic flow of a generalized second
grade fluid in a porous medium between two infinite parallel
plates is studied here. The exact solution for the velocity field
is obtained in series form. The affect of the fractional calculus
parameter  and the porosity parameter  have been discussed
graphically. The expressions of the velocity for two cases with

= 1 and = = 0 are derived as limiting ones from the
expression of the velocity field for the generalized second
grade fluid.
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 Figure 3: The velocity  is depicted against time t for
different values of the fractional calculus parameter .
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Figure 4: The velocity  is depicted against time t for differ-
ent values of the porosity parameter .  =0.2, =0.3,
y=0.4
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