
International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014                                                                                                      54 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

History of P versus NP Problem 
Mamta 

 
Abstract— In this paper a brief history of famous P versus NP problem is discussed. Does P = NP? emerges as great challenge of 
science. The research work done by prominent experts of the field and theories given by them are concluded. This paper is prepared for 
non-specialists so I try to keep it as non technical as possible. Further predictions done by some great mathematicians are also given. 

Index Terms— Alan Turing , Alonzo Church, Cobham-Edmonds, Computational complexity, David Hilbert, June Hartmanis , Kurt Godel, 
Lenoid Levin, NP class, NP-complete, P class, Richard Karp, Richard Stearns, Stephen Cook, Turing machine . 

——————————      —————————— 

1. INTRODUCTION                                                                     

The P versus NP problem is a major unsolved problem in 
computer science and is considered by many to be the most 
important open problem in the field. It is one of the seven Mil-
lennium Prize Problems selected by the Clay Mathematics 
Institute to carry a US$1,000,000 for the first correct proof. In-
formally, it asks whether every problem whose solution can be 
quickly verified by a computer, can also be quickly solved by a 
computer. According to Computational complexity theory, the 
class P consists of all those decision problems that can be 
solved on a deterministic sequential machine in an amount of 
time that is polynomial in the size of the input; the class NP 
consists of all those decision problems whose positive solu-
tions can be verified in polynomial time given the right infor-
mation, or equivalently, whose solution can be found in poly-
nomial time on a non-deterministic machine. 

2. HISTORY 
It started in 1928, when David Hilbert posed a challenge, 
named Entscheidungsproblem (German for “decision prob-
lem”) which asks for an algorithm that takes as input a state-
ment of first-order logic and answers ‘Yes’ or ‘No’ according to 
whether the statement is universally valid, i.e., valid in every 
structure satisfying the axioms. By the completeness theorem 
of first-order logic, a statement is universally valid if and only 
if it can be deduced from the axioms, so 
the Entscheidungsproblem can also be viewed as asking for an 
algorithm to decide whether a given statement is provable 
from the axioms using the rules of logic. The origin of 
the Entscheidungsproblem goes back to Gottfried Leibniz, 
who in the seventeenth century, after having constructed a 
successful mechanical calculating machine, dreamt of building 
a machine that could manipulate symbols in order to deter-
mine the truth values of mathematical statements. He realized 
that the first step would have to be a clean formal language, 

and much of his subsequent work was directed towards that 
goal. 
 
In 1936, Alonzo Church and Alan Turing published independ-
ent papers showing that a general solution to the Entschei-
dungsproblem is impossible. This assumption is now known 
as the Church-Turing thesis. Alan Turing argued that “when-
ever there is an effective method for obtaining the values of a 
mathematical function, the function can be computed by a 
Turing machine”. While according to Church’s thesis, “A func-
tion of positive integers is effectively calculable only if recur-
sive.” If attention is restricted to functions of positive integers 
then Turing’s Thesis and Church’s thesis are equivalent, and 
thus the term Church-Turing thesis was first introduced by 
Kleene. Thus the thesis can be stated as follows “Every effec-
tively calculable function is a computable function.” Since 
1966, the Turing award has been given annually by the Associ-
ation for Computing Machinery for technical or theoretical 
contributions to the computing community. It is widely con-
sidered to be the computing world's highest honour, equiva-
lent to the Nobel Prize. 
On 20 March 1956, Kurt Godel in his letter to Neumann wrote 
about this problem. Few lines from the letter are “One can 
obviously easily construct a Turing machine, which for every 
formula F in first order predicate logic and every natural 
number n, allows one to decide if there is a proof of F of length 
n ( length = number of symbols). Let ψ(F⋅n) be the number of 
steps the machine requires for this and let ϕ(n) = max(F, 
ψ(F⋅n)). The question is how fast ϕ(n) grows for an optimal 
machine. One can show that ϕ(n) ≥ k⋅n. If there really were a 
machine with ϕ(n) ~ k⋅n (or even ~ k⋅n2), this would have con-
sequences of the greatest importance.” However, this letter 
was discovered only in the 1989 and was publicized when Ju-
ris Hartmanis published a translation and commentary. 
Alan Cobham's 1965 paper entitled "The intrinsic computa-
tional difficulty of functions” is one of the earliest mentions of 
the concept of the complexity class P, consisting of problems 
decidable in polynomial time. The Cobham-Edmonds thesis 
named after Alan Cobham and Jack Edmonds (also known as 
the extended Church-Turing thesis) states that any reasonable 
model of computation can be simulated on any other with a 
slowdown that is at most polynomial in the size of the input. 

———————————————— 
• Mamta is currently pursuing master of technology degree program in 

computer science engineering in Gurgaon Institute of Technology, Gurga-
on affiliated to Maharshi Dayanand University,Rohtak, India, PH-
7876860777. E-mail:mamta100492@gmail.com 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014                                                                                                      55 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

Cobham theorized that this complexity class was a good way 
to describe the set of feasibly computable problems. Any prob-
lem that cannot be contained in P is not feasible, but if a real-
world problem can be solved by an algorithm existing in P, 
generally such an algorithm will eventually be discovered. 
Edmonds was the recipient of the 1985 John von Neuman 
Theory Prize. 
In 1965, June Hartmanis with Richard Stearns published a Tu-
ring-award winning paper “On the Computational Complexi-
ty of Algorithms.” It provides a precise definition of the com-
plexity of an algorithm, defines the concept of a complexity 
class, and shows that there is an infinite sequence of distinct 
complexity classes and therefore an infinite sequence of in-
creasingly hard problems. They defined a complexity class as 
the set of all problems solvable within a specified time bound. 
Their paper shows that there is an infinite hierarchy of com-
plexity classes (for example, problems for which the fastest 
algorithm takes a time proportional to n, n log n, n2, n3, 2n, and 
so on) where a small increase in the time bound enables more 
problems to be solved. A second paper of Hartmanis with 
Philip M. Lewis showed that a similar hierarchy exists when 
the complexity is defined in terms of the amount of memory 
space required (as a function of input size) to solve the prob-
lem on a Turing machine. Changing the simple model of a 
Turing Machine by separating the “input tape” from the 
“work tape” allowed sub-linear space-bounded complexity 
classes to be defined. 
In 1967, Manuel Blum developed n axiomatic complexity theo-
ry based on his axioms and proved an important result, the so 
called, speed-up theorem. Given a Blum complexity measure 
(ψ,ϕ) and a total computable function f with two parameters, 
then there exists a total computable predicate g (a Boolean 
valued computable function) so that for every program for g, 
there exists a program j for g so that for almost all x 

𝐹�𝑥,∅(𝑥)� ≤ ∅(𝑥) 
f  is called the speedup function. The fact that it may be as fast-
growing as desired (as long as it is computable) means that the 
phenomenon of always having a program of smaller complex-
ity remains even if by "smaller" we mean "significantly small-
er" (for instance, quadratically smaller, exponentially smaller). 
The field really began to flourish when the US researcher Ste-
phen Cook and working independently, Leonid Levin in the 
USSR, proved that there exist practically relevant problems 
that are NP-complete. In the US in 1971, Stephen 
Cook published his paper "The complexity of theorem proving 
procedures" in which he formalized the notions of polynomi-
al-time reduction and NP-completeness, and proved the exist-
ence of a NP-complete problem by showing that the Boolean 
satisfiability problem is NP-complete. This theorem was prov-
en independently by Leonid Levin, and has thus been given 
the name the Cook-Levin theorem.  Levin's journal article on 
this theorem was published in 1973; he had lectured on the 
ideas in it for some years before that time though complete 

formal writing of the results took place after Cook's publica-
tion. Levin was awarded the Knuth Prize in 2012 for his dis-
covery of NP-completeness and the development of average-
case complexity. 
 In 1972, Richard Karp took this idea a leap forward with his 
landmark paper, “Reducibility among Combinatorial Prob-
lems”, in which he showed that 21 diverse combinatorial and 
graph theoretical problems, each infamous for its computa-
tional intractability, are NP-complete. He received Turing 
award in 1985 for his continuous contribution to the theory of 
algorithms. 
In August 2010, Vinay Deolalikar, who works at the research 
arm of Hewlett-Packard in Palo Alto, California, believes he 
has solved the riddle of P vs NP in a move that could trans-
form mankind’s use of computers. He claims to have proven 
that P, which refers to problems whose solutions are easy to 
find and verify, is not the same as NP. But a clear consensus 
has emerged that the proof, as it stands, is fatally flawed. 
In 1996 and 1997, SIGACT News Complexity Theory Columns 
14 and 15 collected various experts’ opinions on the future of 
computational complexity. How Will it Be Resolved? 
Out of 100 experts, 61 thought P≠NP; 9 thought P=NP; 4 
thought that it is independent, while no particular axiom sys-
tem was mentioned; 3 just stated that it is not independent of 
Primitive Recursive Arithmetic; 1 said it would depend on the 
model and 22 offered no opinion. 

3. CONCLUSION 
It is evident that every problem in P is also in NP. The correct-
ness of the algorithm generating the solution automatically 
certifies that solution. But we are not sure about the converse. 
Although the P = NP? problem itself remains open despite a 
million-dollar prize and a huge amount of dedicated research 
to solve the problem has led to several new techniques. All 
known proof techniques, each of which is known to be insuffi-
cient to prove that P ≠ NP. But we don’t have to lose the hope 
as R. M. Karp in March 2001 predicted that “the P versus NP 
problem will be resolved, one way or the other, by a mathema-
tician under 30 using an approach that nobody has thought of 
yet.” While on the other hand S. A. Cook predicted that 
“Someone will give a sound proof that P is not NP, sometime 
in the next 20 years.” 
 

4. ACKNOWLEDGMENT 
Author would like to thank her husband, Pankaj Dhawan who 
has consistently encouraged writing this article.  Author also 
expresses sincere gratitude to Mr. Sidharth Biswas for his help-
ful suggestions and constructive criticism of this work. 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014                                                                                                      56 
ISSN 2229-5518   

IJSER © 2014 
http://www.ijser.org  

5. REFERENCES 
[1] R.Karp. Reducibility among combinatorial problems, 

In R. Miller and J. Thatcher, editors, Complexity of 
Computer Computations, pages 85-103, Plenum 
Press, 1972. 

[2] Hartmanis J. and R.E. Stearns, “On the Computational 
Complexity of Algorithms,” Transactions of the Ameri-
can Mathematical Society, Vol.117, Issue 5 (May 1965), 
pp. 285-306. 

[3] L. Levin. Average case complete problems. SIAM 
Journal on Computing, 15:285-286, 1986. 

[4] A. Turing. On computable numbers, with an applica-
tion to the Etscheidungs problem. Proceedings of the 
London Mathematical Society, 42:230{265, 1936. 

[5] L. Fortnow and S. Homer. A short history of computa-
tional complexity. Bulletin of the European Associa-
tion for Theoretical Computer Science, 80, June 2003. 
Computational Complexity Column. 

[6] J. Edmonds. Paths, trees and owers. Canadian Journal 
of Mathematics, 17:449{467, 1965. 
[7]  L. Fortnow and W. Gasarch. Computational 
complexity. http://weblog.fortnow.com. 

[8]  S. Cook. The complexity of theorem-proving proce-
dures. In Proceedings of the 3rd ACM Symposium on 
the Theory of Computing, pages151 {158. ACM, New 
York, 1971. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[9] A. M. Turing, On computable numbers, with applica-

tions to the Entscheidungs problem,Proc. London 
Math. Soc. (2) 42 (1937), 230-265. 

[10]  M. Davis, Computability and unsolvability, McGraw-
Hill, New York, 1958. 

[11] H. Yamada, Real-time computation and recursive 
functions not real-time computable, IRETrans. EC-11 
(1962), 753-760. 

[12] J. Myhill, Linear bounded automata, ^ADD Tech. 
Note 60-165, Rep. No. 60-22, Univ.of Pennsylvania, 
June, 1960. 

[13] R. W. Ritchie, Classes of predictably computable func-
tions, Trans. Amer. Math. Soc.106 (1963), 139-173. 

[14] A.N.Chomsky, on certain formal properties of gram-
mars, Information and Control 2(1959), 137-167. 

[15] J. Hartmanis and R. E. Steams, Computational com-
plexity of recursive sequences, Proc. 

[16] Fifth Annual Sympos. On Switching Theory and Log-
ical Design, Princeton, N. J. 1964. 

[17] M. O. Rabin, Real-time computation, Israel J. Math. 1 
(1963), 203-211. 

[18] Computational Complexity: a conceptual perspective 
by Oded Goldreich. 

IJSER

http://www.ijser.org/
http://weblog.fortnow.com/

	1. Introduction
	2. History
	3. Conclusion
	4. Acknowledgment
	5. References



