
International Journal of Scientific & Engineering Research, Volume 6, Issue 8, August -2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

GPU-based Real-Time Multiple Moving Objects
Tracking using Integrated Spatial Region Graph

for Video Surveillance
Samy S. A. Ghoniemy

Abstract— This paper presents the integration of a proposed enhanced multi-object color tracking, Partitioned Region Matching (PRM),

and Spatial Region Graph (adjacency graph) for real time multi-object tracking. The problem of real-time object tracking is addressed by

employing feature-based tracking technique that focuses on the integration of color feature tracking in regions of interest, and motion

estimator which directly exploits computation of the region-level motion vectors through Partitioned Region Matching (PRM) that is based

on the presence of gradients and semantically identify them according to their energy and other motion parameters. The preprocessed

information are then converted to a spatial region graph (SRG) which is used as a starting point of a Markov Random Field (MRF) process,

where regions are merged according to their semantics. The execution of the proposed system using GPU (NVIDIA GeForce GT 740M)

showed that the processing time is enhancement by an order of 64% compared with its execution using CPU, which enabled an efficient

onboard processing as well as centralized real-time processing of surveillance data, images and videos. The proposed method maps

perfectly onto GPU architecture and has been implemented using NVIDIA CUDA. Experimental results on GPU for a sequence of frames,

each of 460x480 pixels, showed that the implementation on GPU is 64 times faster than on CPU and confirmed the ability to process

approximately 62 frames/s satisfying the necessary requirements for the correct subsequent tracking and reaching real time performance

that demonstrates the suitability of the proposed system for real-time video surveillance.

Index Terms— GPU-based real-time tracking, Moving object tracking, Multi-object color tracking, Partitioned Region Matching, Remote

video surveillance, Spatial region graph, GPU-CUDA.

——————————  ——————————

1 INTRODUCTION

owadays, object tracking is a mature discipline aiming to
define techniques and systems for processing videos
from cameras placed in a specific environment. Tracking

an object in video has a variety of real world applications;
these include autonomous aerial reconnaissance, remote sur-
veillance, and advanced real time collision avoidance systems.

Computer vision image processing algorithms were used to
allow the computer to understand the contents of the image of
multidimensional data and track specific color combination
[1], [2], [3] to avoid the target mismatching. These research
openings allowed extracting specific information from the
image for a specific purpose such as controlling industry robot
or an autonomous vehicle [4], [5]. Computer vision systems
use digital gray-scale or color image data [6], [7], [8], [9], [10]
to solve a specific task. Other computer vision systems use
two or more images from a stereo camera pair, a video se-
quences, or a 3D volume [11], [12] to solve the same problem.
Most of these computer vision systems are pre-programmed;
and they are not completely suitable for real-time tracking
systems. The reason for this is, because most of the computer
vision systems study the tracking problem as a purely tech-
nical image processing problem depending on the software
developments.

Tracking moving objects in the real time is a complex prob-
lem and many extensive studies conducted over the last few

years tried to enhance these approaches. However, impressive
tracking systems have been developed for some specific appli-
cations [13], [14], [15]; they showed a lack of the navigation
enhancement for these moving objects and failed to integrate
with a complete remotely controlled environment.

HAAR like features are image features used for object de-
tection and recognition. It is one of the fastest and most accu-
rate object detection algorithms. The term “HAAR-like fea-
tures” origins from the calculation of Viola and Jones [16]
which works with HAAR wavelet transform method, a win-
dow of the target size is moved over the input image, and for
each subsection of the image the HAAR-like feature is calcu-
lated. This difference is then compared to a learned threshold
that separates non-objects from objects. The discrimination
between objects and non-objects is achieved by the learning
phase. A set of both positive and negative images is fed to the
HAAR trainer, from which the classifier is extracted. After the
training phase, the classifier could be applied to a region of
interest on the captured frame from the video. The classifier
outputs "1" if the region contains an object and "0" otherwise.
To search for an object in the whole frame, sliding window
technique is applied, whereas a window (of fixed size as that
used during training) is moved across the image [17].

Agrawal proposed a design, which will have a great impact
on video surveillance systems, whereas a segmentation is used
after background subtraction and background estimation, this
was used to reduce noise and locate a moving target in a
frame. For multiple moving objects detection in poor lighting
conditions, wavelet-based contrast change detector was inte-

N

————————————————

 E-mail: samy.ghoniemy@bue.edu.eg

1133

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

grated with locally adaptive thresholding scheme for initial
frames. For later frames latest change detector mechanism was
used. This has significant results for surveillance systems,
where the camera is mounted in a stable location, but for
handheld devices [1].

The main problems in this research are the robustness of
the tracking algorithm especially for fast moving objects and
system integration. The gab between the capabilities of the
vision system and the embedded processing system still a
challenging subject, and many proposed systems in this pro-
spective have been published, such as in [18], [19]. In these
systems, motion planning is integrated with the tracking sys-
tem in order to improve the overall system capabilities. The
main drawbacks of these systems are their burden in the inte-
gration with the highly sensitive vision systems. Robust and
fast image processing techniques, and embedded MCU based
systems for robot motion control still require a noticeable en-
hanced navigational multi-object color tracking algorithms.

The organization of this paper starts with an introduction
in Section 1. In Section 2, the theory of multi-object motion and
color tracking is introduced then hybrid background removal,
partitioned region matching and spatial region graph for multi
object motion tracking are deeply discussed, also experimental
results and analysis of this part are presented. In Section 3 a
modified multi-object tracking algorithm using multi-core
processor and GPU together with its experimental results are
presented. Finally Section 4 includes the summary and some
conclusions.

2 MULTI OBJECT MOTION AND COLOR TRACKING

USING SINGLE PROCESSOR

The process of detecting objects is to analyze the information
in the image, to create state measurements that enable to track
moving objects. There are two methods that are useful for mo-
tion detection. The first technique is based on adaptive thresh-
old , while the second is the color detection using hue segmen-
tation [15]. After the detection the problem is to track and rec-
ognize these moving objects and preserve their locations even
if any object stops its motion. In this section a multi-object col-
or tracking model will be introduced, the model integrates the
motion and color tracking taking the advantages of the two
methods to optimize the processing time

2.1 Multi-Object Motion Tracking

The proposed multi-object motion tracking started by imple-
menting the simplest frame difference approach with a modi-
fied dynamic (global) threshold technique in which the
threshold is extracted from the histogram of the current frame
to be suitable for lighting conditions changing and to over-
come the limitations of previously published techniques that
were based on static threshold assumption [15]. The modified
algorithm is implemented and tested under different condi-
tions to verify its robustness and its validity in detecting ob-
jects without false motion or missing motion detection.

This algorithm is further modified by introducing the novel
“Sequential Connected Component Algorithm with Feed-
back”. In this algorithm, a search is conducted for all points

that represent an object using frame difference in order to de-
tect the area in which motion takes place and then feedback is
used to update previous locations. The proposed algorithm
was implemented and enhanced using multithreading in
which the system automatically creates a thread for each de-
tected motion area and whose computations can then be done
separately. In this proposed algorithm, the motion tracking
computations are done by taking a ROI of W×H pixels around
each centroid according to the experimental environment (Ro-
bot Speed, Camera Height) as given in the following equation,
 : { , / }ROI W H V DT (1)

where DT is the time difference between two frames.
Experiments showed that the proposed system is able to

identify the locations of all objects with no false alarms or
missing motion areas as shown in Fig. 1.

The time enhancement was measured during many exper-
iments and it was found that for a few number of objects, the
proposed system using multi-threading takes around 19 to
59% of the time using the traditional full frame difference
technique. Fig. 2 shows the calculated processing time accord-
ing to number of objects via ROI vs. the full frame processing
time.

Fig. 1. Experimental results of a multi object motion tracking algorithm.

Fig. 2. Calculated processing time according to number of objects using
multithreading.

Table 1 shows the computation time to track multiple ob-
jects using the proposed algorithm (Average overhead compu-
tation time is 150 msec for (Frame header + Fill Matrix + Glob-
al threshold calculation + Labeling)) and using traditional
techniques for different numbers of objects. The average com-
putation time is reduced by approximately 60%.

1134

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

TABLE 1

COMPUTED TRACKING TIME USING THE PROPOSED ALGORITHM VS.
USING THE TRADITIONAL ALGORITHM.

The average error between the actual and the measured tra-
jectories after applying the multi-threading motion tracking
algorithm of two tracked objects at certain locations in speci-
fied frames is measured and drawn as shown in Fig. 3.

The average error is found to be less that 0.07% under dif-
ferent environmental conditions and the algorithm is stable
towards stopped objects.

Fig. 3. Experimental results of the integrated multi object motion tracking
algorithm.

The main drawback that emerged after testing many situa-
tions is that the system gets confused if the edges of two or
more objects touch each other or objects areas overlap. To
solve this problem a modified color tracking algorithm is pro-
posed and discussed in Section 2.2.

2.2 Multi-Object Color Tracking

The main goal of artificial vision applications is to simulate the
human vision skills such as recognizing object movements and
track them in complex environments. A commonly applied
technique to identify moving objects is background removal
(subtraction) as it was discussed in Section 2.1. In general,
background removal algorithm pass throw four steps which
are pre-processing, background modeling, foreground detec-
tion and data validation [20]. For the purpose of designing an
accurate background removal algorithm features such as; size
(pixel, block, or cluster) and type (color, edge, stereo, motion
and texture) must be chosen carefully with respect to the ap-
plication and it should be able to accurately detect shapes (i.e.
not affected by shadows, highlight, etc.), be reliable in differ-
ent light conditions and movements of background objects,
flexible to different scenarios (indoor and outdoor) and com-
putationally efficient. On the other side, as a fact, the color of
an object in video streams can differ quite significantly from
what is seen using naked eye. Many environmental factors can
affect the color of an object in the video exposure of the cam-
era, such as white balance setting, ambient lighting, and reflec-
tion of the spot lights.

For these purposes, many significant research efforts had
been published to address this problem such as in [21], in
which Median Filter (MF) and approximated median filter

(AMF) were used. The results in this publication showed that
although MF is fast and simple, it needs high memory re-
quirements, while AMF is considered a good technique only
for indoor applications and it suffers from slow adaptation
when there is a large change in background. Other research
groups such as in [22], [23] proposed statistical models. In [22],
statistical models were designed based on color and shape
features where researchers in [23] used statistical models of
gradients and color to classify pixels and keeps six values per
pixel for gradient/color information, and region mapping. The
algorithm works by grouping the foreground pixels in regions
based on their color, and then checks their boundaries for
foreground gradients, and keeps those whose boundary over-
laps with detected foreground gradients.

As these algorithms fail to deal with complex outdoor
scenes, the need for other statistical methods like W4 ap-
peared. W4 system uses a bimodal background model keeping
three values per pixel: minimum intensity, maximum intensi-
ty, and maximum intensity difference between consecutive
frames [24]. Initially the background is constructed using MF
and is then updated based on the change map, the major
drawback of this algorithm is the high memory requirements.

A very popular technique in surveillance systems for out-
door scenes is Stauffer Mixture of Gaussian (MoG) [25], which
is adaptive, online, and can handle multimodal backgrounds.
MoG maintains a probability density function (PDF) for each
pixel and thus has intermediate to high memory requirements.

One of Several methods to deal with multi-modal distribut-
ed background pixels is Wallflower [26], which employs a lin-
ear Wiener filter to learn and predict background variations.
Although Wallflower works well for periodically changing
pixel, it is less effective when background pixels change dra-
matically or the movements of those background pixels are
less periodically.

All these algorithms faced many problems such as similar
color appearing in foreground and background areas, change
of lighting condition and noise. To overcome these problems
and to obtain a robust segmentation algorithm, a hybrid back-
ground removal algorithm will be discussed below.

2.2.1 Hybrid background removal algorithm

In this section, a proposed hybrid background removal algo-
rithm that preserves the accurate boundary of moving object is
discussed. Fig. 4 illustrates the overall structure of the pro-
posed algorithm which consisite of four sequential stages.

In the first stage background model is trained in RGB color
space from certain number of frames; the background model
(Bi) is modeled by calculating the mean and standard devia-
tion (, ) for each pixel. In the second stage, the current frame
(Ii) is subtracted from the background model (Bi), then a pre-
determined threshold is used to detect the foreground binary
mask (Fsi). At the same time a single 3D Gaussian distribution
is used to detect the foreground binary mask (Fgi) and an
ANDing is performed to combine FSi and Fgi leading to the
common foreground binary mask (FCi). Next a simple con-
nected component method is used to get the boundaries of the
region of interest (ROI) from the common foreground binary
mask (FCi) results from the previous stage then the edges of

1135

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

the moving objects is detected using the frame difference (FD)
algorithm while its area is filled using simple line segmenta-
tion method and shadowes are removed. The last stage is to
validate region pixels using Fs, Fg and the output from line
segmentation, then the background model (Bi) is updated re-
cursively using Gaussian running average filter.

Fig. 4. Block diagram of the proposed adaptive background removal
algorithm.

The proposed technique was evaluated using the Wallflow-
er sequences, 120x160 color images [27] and compared to some
commonly used detection techniques. To evaluate the perfor-
mance against each sequence, False Positive (FP), False Nega-
tive (FN), and total error (TE) are used. FP is the number of
wrongly marked background pixels as foreground; FN is the
number of wrongly marked foreground pixels as background;
TE is the sum of FP and FN for each sequence. For the overall
performance evaluation, TET is the sum of total error for all
image sequences. Fig. 5 shows the results obtained by using
the proposed technique compared with several other state-of-
the-art methods. From Fig. 5, it is concluded that the proposed
technique achieves the most accurate overall performance of
total error (TE) for image sequence of moved object among the
competitive methods even though there is no elimination for
the foreground pixels whose 4-connected foreground pixels
number less than 8 as other methods did.

Fig. 5. Overall performance obtained by using the proposed technique compared
with several other state-of-the-art methods.

2.2.2 Enhanced hybrid background removal algorithm

In practice, the performance of this technique is largely de-
graded because the color of an object in video streams can dif-
fer quite significantly from what is seen using naked eye. Prac-
tically, many environmental factors can affect the color of an
object in the video exposure of the camera, such as white bal-
ance setting, ambient lighting, and reflection of the spot lights.
Theoretically, an object of red color should have the RGB val-
ue of (255, 0, 0), in practice, one can never find such value alt-
hough the object is really red in color when seeing it with na-
ked eyes. Testing the RGB values produced by the camera at-
tached to server showed that they do not give enough infor-
mation to identify all objects in the region of interest. So, it is
more reasonable to convert the representation of colors into
suitable color space in order to catch all color specifications.
Many color spaces like CMY, HSV, XYZ, and YCbCr are ana-
lyzed, from them the HSV gave the best results and found to
be closer to human perception. The HSV color space provides
us with a component containing the color wavelengths called
Hue (H) which defines the set of the color, Saturation (S)
which defines how pure the color will be, and Value (V) which
defines the brightness of the color as shown in Fig. 6.

Fig. 6. HSV Color Model.

In this model, segmentation by hue is achieved by setting
all pixels that have a hue in a specific range around the hue of
the background to belong to the background. Pixels with a
different hue are set to be objects. The range of hues which
will be classified as background is selected by examination of
the hue component’s histogram, where the background will
have a distinct peak. The main advantage of this method is
that effects of lighting and shadows can be reduced since the
intensity and saturation information is separated from the hue

1136

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

component in the HSV color space.
Testing the traditional multi-object color tracking technique

showed that there exist two main problems. The first problem
is that it requires a long processing time for full frame color
transformation which is not suitable for real time applications.
Therefore, more modifications are proposed to minimize the
processing time in which color transformation is applied only
for regions around the extracted centroids of targets.

Fig. 7 illustrates the flowchart of the integrated motion and
modified color tracking algorithms after applying the color
space transformation for the regions of interests.

Fig. 7. Flowchart of enhanced motion and color tracking algorithms.

In this model, segmentation by hue is achieved by setting
all pixels that have a hue in a specific range around the hue of
the background to belong to the background. Pixels with a
different hue are set to be objects. The range of hues which
will be classified as background is selected by examination of
the hue component’s histogram, where the background will
have a distinct peak. The main advantage of this method is
that effects of lighting and shadows can be reduced since the
intensity and saturation information is separated from the hue
component in the HSV color space. A disadvantage of this
model is that it is usable only when there are enough colors in
the image.

The proposed model enhancement allows color transfor-
mation of areas corresponding to theoretically more than 50
objects/frame at a frame size of 400×400 pixels while the tradi-
tional algorithm just makes color transformation of the given
frame. Since the average number of objects in the frame is 8
objects to keep the details of objects, then many tasks can be

done during the saved time.
Fig. 8 shows the theoretical number of objects at different

times at frame of 400x x400 pixels.

Figure 8: Procesing time enhancement using multi-threading techniques.

The second problem appeared when more than one color
exist and more than one object have the same color leading to
different areas with the same label after color segmentation.

The labeling here is therefore nested in order to cover all
objects of different colors. For each color i, assign label Li, scan
full frame, and the objects of that color are labeled Li0, Li1 …
LiN. So, the more the colors, the more processing time needed.
The proposed model implements one level labeling which
reduces the time needed to that of a single full frame scan by
integrating motion tracking with color tracking.

Fig. 9 presents some of the experimental results using the
modified multi-object color tracking algorithm. This figure
shows that no false alarms or missing objects during the ex-
periment for 120 frames.

Fig. 9. Experimental results of the enhanced integrated multi object motion

and color tracking algorithm.

The average time enhancement using the multi-threading
technique after many experimental measures was found to be
54% of the traditional multi-object color tracking when the

1137

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

number of objects is less than 15. Table 2 compares the pro-
cessing time for different cases using multi-threading and tra-
ditional color tracking algorithms.

TABLE 2
 PROCESSING TIME USING MULTI-THREADING COMPARED WITH

TRADITIONAL MULTIOBJECT COLOR TRACKING TECHNIQUES.

Testing this technique showed that the required processing

time and memory requirements are nonlinearly increasing
functions with respect to the number of objects and even gets
worth in case of different object shapes/geometries such as in
tracking multiple persons. This indeed not suitable for real
time applications such as in case of survelance applications.
Therefore, more modifications will be proposed in the follow-
ing section to minimize the processing time and memory utili-
zation for real time survelance applications.

2.3 Partitioned Region Matching and Spatial Region
Graph (SRG) for Multi Object Motion Tracking

In this proposed enhanced approach each frame of the se-

quence is segmented into regions by using color with the as-
sumption that each region contains only one object as dis-

cussed in Section 2.2. In this section this assumption is more

modified by assuming that each region may contain a part of

one object. This algorithm consists of two major phases.
Phase 1- color-based region segmentation and SRG creation,

for this task the following tasks are performed:

1) Color segmentation is implemented based on the region

growing algorithm using the proposed algorithm in Section

2.2.2, then;

2) A Spatial Region Graph (SRG) is created, in which nodes

with attributes (area size, the coordinate of the bounding-
box and the centroid’s position) represent regions, whereas

arcs (edges) represent topological adjacencies (predicates).
Phase 2- object motion estimation and regions merging, for

this task the following tasks are performed:

1. With the assumption that camera and objects are slowly

moving, the motion estimation algorithm computed with
the adoption of the translational motion model in which

the region-level motion vectors (velocity and reliability) are

directly computed for each region using Partitioned Region
Matching that is based on classical Sum of Absolute Differ-

ences (SAD) over each region, and are then stored in the

Spatial Region Graph (SRG) as an update, then;

2. Regions with similar motion are merged according with an
energy function influenced by the motion vectors using
Markov Random Field (MRF) process [28]. As proposed in
[28], the energy function is composed by three terms: the
first term (U1) represents the motion, the second term (U2)

represents the geometrical regularization, and the last term
(U3) represents the number of broken arcs (pairs of regions
geometrically adjacent but with different labels). This ener-
gy function is given by; U(e, o) = U1(e, o) + U2(e) + U3(e),
where e and o are the labels and the observation fields, re-
spectively, then;

3. Background and objects identification starts. In this algo-
rithm, the largest region after merging similar regions that
exhibit similar motion (i.e., the Euclidean distance in the
velocity space must be under a suitable threshold) is classi-
fied as background and its motion as the motion of the
camera, while other regions are classified as moving objects
and temporal continuity of motion field is supposed to per-
form a prediction of the next frame.

4. The final step is the prediction step, which is used to restart
the region-level MRF process for the analysis of the next
frame.

5. Repeat.

Fig. 10. Flowchart of multi object motion tracking using partitioned region

matching (PRM) and spatial region graph (SRG).

2.3.1 Experimental results

In order to study the efficiency of the above algorithms, the pro-
posed system has been implemented and evaluated on the Wall-
flower dataset sequences [26]. The video sequences composed of

50 frames, these sequences are:
Moved Object: A person enters into a conference room, makes a
telephone call, and leaves. The background is evaluated using 50

Color transformation and segmentation
using region growing algorithm

Co
lo

r-b
as

ed
 re

gi
on

 se
gm

en
ta

tio
n

an
d

SR
G

cr
ea

tio
n

Spatial Region Graph (SRG) Creation

Motion estimation using
Partitioned Region Matching (PRM)

algorithm

O
bj

ec
t m

ot
io

n
es

tim
at

io
n

an
d

re
gi

on
 m

er
gi

ng

Regions merging using
Markov Random Field (MRF) process

Last Frame?

Last Region?
Update Region

label

Update Frame
Sequence

Frame Sequence

…..

Classification for Background and
objects identification

No

No

Yes

Yes

Tracked objects

1138

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

frames after the person leaves the scene.
Time of Day: A darkened room that gradually becomes brighter
over several minutes. A person enters into the room and sits
down.
Light Switch: First as a training stage the camera sees a room
with the lights both ON and OFF for long period. Then the room
starts with the lights OFF. After a few minutes a person enters the
room turns ON the light, and moves a chair. The foreground ob-
jects are both the person and the moved chair is considered fore-
ground.
Waving Trees: A swaying tree and a person walks in front of it.
Camouflage: A rolling interference monitor with bars sits on a
desk. A person walks into the room in front of the monitor.
Bootstrapping: The sequence shows several minutes of an over-
head view of a busy cafeteria, where every frame contains people.
Foreground Aperture: A back view of a sleeping person, with a
uniformly colored shirt, at his desk, viewed from the back. He
slowly wakes up and begins to move.

To evaluate the performance against each sequence, FP, FN,
and TE are used. For the overall performance evaluation, TET, the
sum of total error for all image sequences is used. The proposed
evaluation tests are; (1) ground-truth tests (i.e. tests with manual-
ly segmented frames as ground-truth) have been performed to
evaluate the efficacy, (2) a time analysis test has been carried out
to study the capability of the proposed system to satisfy real-time
requirements. The proposed system is executed on a Dell Lati-
tude E5530 laptop with a 2.5 GHz i5 processor, 8 GB RAM, and
Windows 7 64-bit.
1- Performance evaluation
The FP, FN, and TE errors obtained for the foreground aperture
and waving trees sequences using the proposed system and other
12 published systems are presented in Figures 11-13.

Fig. 11. False Positive (FP) error points of still objects or of the
background wrongly marked as belonging to moving objects.

Fig. 12. False Negative (FN) error points or moving objects’ points that are
not detected or wrongly marked as belonging to background.

Fig. 13. Total error (TE), the sum of total error for all image sequences.

Taking all together, Figures 11-13 show that the proposed

system gives satisfactory results in terms of accuracy of seg-

mentation and motion detection.
2- Computational performance evaluation
Computational time analysis has been carried out using differ-
ent frame sizes such as 100x100, 120x160, 200x200, 400x400,
640x480, 900x450, and 1024x768 to present a detailed time
analysis that shows the cost of each phase and their possible
dependencies on application parameters. Fig. 14 illustrates the
computational time of color segmentation, spatial region
graph (SRG), object motion estimation using PRM and regions
with similar motion merging using broken arcs-based MRF
process for one 200x200 frame versus different number of re-
gions at maximum region shift of 20 pixels.

Fig. 14. Computational time for one 200x200 frame versus different
number of regions at maximum region shift of 20 pixels.

Taking all together, Fig. 11–to- Fig. 14, it is concluded that

the necessary computational time for the color segmentation
and SRG phase approximately does not depend on the num-
ber of regions, instead largely depends on the frame size, tak-
ing into account that SRG processing time is affected only by
the number of nodes representing the adjacent regions and
their connecting arcs. It is also concluded that the computa-

tional time for motion estimation depends not only on the
frame size but also on the number of regions and the size of
region shift. Finally, the processing time required for MRF
increases nonlinearly with the number of regions which in
turn affects the PRM especially for larger size of region shift.

1139

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

3 MULTI OBJECT TRACKING USING MULTI-
CORE PROCESSOR AND GPU

When looking at the execution time of the whole algorithms
proosed in Section 2, it was concluded that the processing time
of the color segmentation, SRG creation and motion estimation
is largely depends on the frame size, the number of regions
and the size of region shift. To reduce the number of computa-
tions required, all operations are restricted to a region-of-

interest (ROI) or window. Yet, region growing still the most
consuming processing power. Therefore it will be reasonable
to implement this feature on the graphics processing unit

(GPU) since the programmable GPU is specialized for highly
parallel computations, multi-threaded, and many-core proces-
sor with tremendous computational processing power and
very high memory bandwidth.

Recently, many parallel programming interfaces have been
proposed, among them, the compute unified device architec-
ture (CUDA) [29], [30] has become one of the most practical
parallel computing platform and programming model invent-
ed by NVIDIA [31], [32], [33]. CUDA enables dramatic in-
creases in computing performance by harnessing the power of
the GPU, utilizing two other types of memory access, shared
memory and global memory, on top of the texture cache units
as well as the utilization of its execution model which involves
kernels, threads, blocks and grids.

From the programmer’s point of view, every program con-
sists of two parts, a host code (called host) run on CPU, and a
kernel, a piece of code (called device) run in parallel on GPU.
CUDA’s extensions to the C programming language allow
programmer to define how many threads performing a kernel
will be executed on a device. The number of threads can great-

ly (up to 10,000) exceed the number of processing units
which execute the program. This paradigm allows program-
mers to consider GPU as an abstract device providing a huge
number of virtual resources. Therefore, not only it provides a
good scalability, it also allows to hide a global memory latency
by very fast thread switching. The threads executed on GPU
form a 1D, 2-D, or 3-D structure, called a block. The blocks are
arranged in 1D or 2-D layout, called a grid. Thus, each thread
can be exclusively defined by its coordinates within a block,
and by coordinates of its block within a grid. Each block of
threads is executed on a single streaming multiprocessors
(SMs); therefore, all threads of a single block can share data in
a shared memory. Block’s threads are executed in warps of 32
threads each, as shown in Fig. 15 [34]. A memory hierarchy is

introduced in a number of levels as shown in Fig. 16. In the
lowest level, there are small, fast, non-shared registers. Then,

each SM contains a shared memory. CUDA threads may ac-

cess data from multiple memory spaces during their execution

as illustrated by Fig. 17.
The proposed implementation uses a 2D grid although it is

based on a 1D grid. The conversion is carried out by each ker-

nel. The kernel’s job is to scan for the features on a single ROI,
keeping in mind that the algorithm yields different window

sizes (i.e. scales) which requires pre-scaled features and win-

dow information such as the x and y position of the window

and the window size. The features set consists of different

stages cascaded together. Each window will pass through all
stages till the end.

Fig. 15. GPU Automatic Scalability [34].

Fig. 16. Threads hierarchy in CUDA programming model [34].

Fig. 17. Memory hierarchy in CUDA programming model [34].

1140

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

The features set consists of different stages cascaded to-
gether. Each window will pass through all stages till the end.

This set of features is done sequentially, meaning that each

kernel will not need to scale the features nor scale the image

itself, in other words the kernel’s job is to evaluate features
and stages for its specific window. To avoid memory latency

and maximum memory bandwidth, the data is sorted accord-

ing to the scale following by the X and Y position of each win-
dow [35]. The number of kernels is equal to the number of

search windows which varies according to the image size

used. Fig. 18 shows the number of search windows vs the im-
age size, it is noted that the number of search windows

increases in a cubic manner, which helps in evaluating the
proposed system.

Fig. 18. Number of Search Windows vs. Image Size (pixels).

Since GPUs are based on PCI Express (PCIe), additional

overhead costs are resulted from host-to-GPU data transfers
and vice versa, which may cause application bottleneck at data
transfer. Many researchers such as in [36] proved that this
process consumes time and processing power, which derived
researchers to search for other approachs to minimize the size
of data allocated and shared from the host to each working
item. For proper memory utilization and decreasing non-
necessary data allocation, all criteria and data passed needs to
be studied to determine the dependency and data size. These
parameters are the original image, integral image, the scaled
feature set, the window upper left and lower right corner (X
and Y) positions, and window step size. Some of these param-
eters are indispensable such as the original and integral imag-
es, and the scaled feature. The rest of the parameters could be
substituted by equations. Therefore, the goal is to find a model
that includes scale, step size, window upper left and lower
right corners (X and Y positions), a modified window ID,
number of windows per row, number of rows and total num-
ber of windows then relate them to the Kernel ID.

3.1 Scale factor prediction model

In order to find an equation that satisfies the scale values, scat-
ter plot as a diagnostic test to curve fitting is applied first. This
helps to identify the model or set of models that would pro-
vide the least error (highest R Squared value). After testing 39
models it was found that the Ratio of Polynomials Fit model
given by (2) and illustrated in Fig. 19 leaded to the highest

least error values, R2  0.996.

   

   

2

2

1.08 - 9.24 - 06 1.79 -11

1- 1.05 - 05 2.74 -11

E ID E ID
Scale

E ID E ID

  


  

 
 
 

 (2)

Fig. 19. PolyRatio (3, 3) Model for Scale Value estimation.

3.2 Optimization of the GPU code

Consulting the scatter plot, it is noted that the relation be-
tween the step value and the scale is a simple linear relation

since it leaded to the highest square value of  0.999562. The
main drawback in this model is its linear dependency on the
step size, since as the scale increases the step size increases
accordingly; which means higher possibility of undetected
objects. For this purpose, a modified window model is pro-
posed as follow.

The modification started by introducing two variables to
evaluate both the X and Y start position of the window in the
original image. After testing 39 models, it was found that no
model will satisfy the whole data set, so the data set was di-
vided into smaller data sets according to the scale. Referring to
Fig. 19, it is noted that the scale remains constant for a period
of time and number of windows per scale (WPS) is given by (3),

*PS PRW W NumOfRows (3)

in which, WPR represents the number of windows per each
row and NumOfRows represents the number of rows in each
image, and they are given by (4) and (5), respectively.

 *
-

Width

PR Width

W Scale
W I

Step
 (4)

 *
-

Width

Height

W Scale
NumOfRows I

Step
 (5)

Where WWidth represents the window size, IWidth and IHeight rep-
resent the sample image width and height, respectively.

The modified window ID would be incremental for every
sub-data set and is given by (6),

modified rangeWID W WID  (6)

where WID represents the Kernel ID currently running.
By applying this model we noticed that it gives extremely

bad results on GPU, since branching was applied to detect the
range for the data set, these conditions froze other working
items due to the Single Instruction Multiple Data (SIMD) ar-
chitecture of the GPU. This means that not all methods are
suitable for a massive parallel processing because the GPU
performance is limited by several conditions: a) the ratio of
parallel to sequential fraction of the algorithm, b) the ratio of
floating point operations to global memory accesses, c)

1141

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

branching diversity, d) global synchronization requirements
and e) data transfer overhead [37], [38].

Thus, the most desired goal is to split data into independ-
ent parts so that they can be processed in parallel. When a
multiprocessor is given one or more thread blocks to execute,
it partitions them into warps and each warp gets scheduled by
a warp scheduler for execution. The way a block is partitioned
into warps is always the same; each warp contains threads of
consecutive, increasing thread IDs with the first warp contain-
ing thread 0. A warp executes one common instruction at a
time, so full efficiency is realized when all 32 threads of a
warp agree on their execution path. If threads of a warp di-
verge via a data-dependent conditional branch, the warp seri-
ally executes each branch path taken, disabling threads that
are not on that path, and when all paths complete, the threads
converge back to the same execution path. Branch divergence
occurs only within a warp; different warps execute inde-
pendently regardless of whether they are executing common
or disjoint code paths [34]. The number of blocks and warps
that can reside and be processed together on the multiproces-
sor for a given kernel depends on the amount of registers and
shared memory used by the kernel and the amount of regis-
ters and shared memory available on the multiprocessor.
There are also a maximum number of resident blocks and a
maximum number of resident warps per multiprocessor.
These limits as well the amount of registers and shared
memory available on the multiprocessor are a function of the
compute capability of the device.

Therefore, to enable the number of blocks and warps to be
processed together on the multiprocessor for a given kernel,
branch divergence is adopted and minimization of the branch
condition true hit is applied as follow.

The proposed enhanced model starts by calculating the pa-
rameter y which indicates whether the current kernel is within
the data set range or not, and is given by (7),

-1 if
 -

0 if
-

1 if

WID the range

ID the range
WID RangeStart

y W
WID

ID
RangeS

the range
tart

W







 







 (7)

where RangeStart values represents the data set window ID
range. Equation (7) is used to calculate the predictor, z, value
and is given by (8),

0 01
()

1 02

if yy
z f y

if y


  



 
   

 (8)

The modified window ID could be estimated using (9),

 -ModifiedWID WID range z  (9)

To calculate both X and Y positions it necessary to use the

modified window ID, hence the X and Y positions will also be
within a sub-data sets, this is done using (10), (12), respective-
ly.

 , ,Modified PR widthX WID W Step i  (10)

where iWidth is given by (11),

 - *
Width Width Width
i I W Scale (11)

The equation for Y position calculations is also presented in
a single formula given by (12),

Modified

PR

WID
Y Step

W

  
   
   

  (12)

3.3 Experimental results

The algorithms presented in Section 2 have been implemented
by following the described method in Section 3, and the exper-
iments were conducted using the same image set on a Laptop
HP Pavilion 15-N043se (Intel Core i7-4500U) with 4M Cache

@1.8 GHz, 2.4 GHz, processor bus speed is 5 GT/s, 8 GB RAM,
display card NVIDIA GeForce GT 740M (2 GB GDDR3 dedi-
cated), and Windows 7 64-bit. The computational time analy-
sis has been carried out using different frame sizes, namely
100x100, 120x160, 200x200, 400x400, 640x480, 900x450, and
1024x768, to present a detailed time analysis that shows the
cost of each phase and their possible dependencies on applica-
tion parameters. Fig. 20 illustrates the computational time of
color segmentation, spatial region graph (SRG), object motion
estimation using PRM and region with similar motion merg-
ing using broken arcs-based MRF process for one 640x480
frame versus different number of regions at dynamic number
of regions and region shift in pixels. The illustrated results in
Fig. 20 are calculated by negating the kernel compilation time,
which only runs once on application startup.

Fig. 20. GPU-based computational time for one 640x480 frame versus

different number of regions at dynamic region shift.

This figure shows that using GPU and optimizing the im-
plementation process have dramatically enhanced the accura-
cy, the computation time (the total processing time for 160
regions is reduced from 1.46 sec to 22.81 ms which means the
processing time is enhancement by an order of 64% compared
with its execution using CPU), and memory allocation.

Another metric usually employed to evaluate the compu-
ting capability of a real-time oriented system is the processing
rate or rate. Rate measures how many frames are processed
per second and is given by (13) [39].

1000 (ms)
 (FPS)= (FPS)

 (ms)total

Rate
t

 (13)

1142

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

in which ttotal is the total processing time of all stages for a sin-
gle frame.
Using GPU optimized implementation and applying (13) the
computed processing rate for 640x480 frames versus different
number of regions is illustrated in Fig. 21. When applying (13),
ttotal is substituted by the summation of processing time of col-
or segmentation, SRG, object motion estimation, and region
merging.

Fig. 21. GPU-based processing rate for 640x480 frames versus different

number of region.

Fig. 21 shows that using GPU optimized implementation
and applying (13), the processing rate varies from 86 to 44
frames per second when the number of regions varies from 10
to 160, respectively and the average rate is 62 frames per sec
satisfying the necessary requirements for the correct subse-
quent tracking stage (a minimum rate between 8 and 15 fps)
and reaching real time performance for surveillance applica-
tions.

4 CONCLUSION

This paper proposed a multi-object visual color tracking algo-
rithm using multi-threading in real-time. Experimental results
show that the proposed integrated system is stable towards
stopped objects (using a constructed memory module), and
partially occluded objects can still be detected, recognized and
tracked using an added color feature. These results also show
that the proposed system supports overlapped regions of in-
terest (ROIs) and reduced the average computation time by
approximately 54% when multithreading is applied. This pro-
posal was further enhanced by including a hybrid background
removal technique. The proposed enhancement is applied to
different practical environments and proved to be effective in
detecting and validating the foreground objects even under
sudden illumination. The modified system is evaluated with
Wallflower benchmarks and the experimental results are
compared with popular background removal techniques and
showed that the system offers comparable, better detection
accuracy and proved to be robust with different background
scenes.
The problem of real-time object tracking is also addressed by

employing feature-based tracking technique that focuses on

the integration of color feature tracking in regions of interest,

spatial region graph, and motion estimator which directly

exploits computation of the region-level motion vectors

through partitioned region matching and Markov random

field process, where regions are merged. The proposed meth-

od maps perfectly onto GPU architecture and has been im-

plemented using NVIDIA CUDA. Experimental results on

GPU for a sequence of frames, each of 460x480 pixels, showed

that the implementation on GPU leaded to the total processing

time for 160 regions is reduced from 1.46 sec to 22.81 ms which

means the processing time is 64 times faster than on CPU and

the processing rate varies from 86 to 44 frames per second

when the number of regions varies from 10 to 160, respectively

and the average rate is 62 frames per sec satisfying the neces-

sary requirements for the correct subsequent tracking stage (a

minimum rate between 8 and 15 fps) and reaching real time

performance. These results demonstrate the suitability of the

proposed algorithm for real-time video surveillance.

REFERENCES

[1] D. Agrawal and N. Meena, “Performance Comparison of Moving Object
Detection Techniques in Video Surveillance System,” The International Jour-
nal of Engineering And …, pp. 240–242, 2013.

[2] E. Weng, R. Khan, S. Adruce, and O. Bee, “Objects Tracking from Natural
Features in Mobile Augmented Reality,” Procedia-Social and …, vol. 97, pp.
753–760, Nov. 2013.

[3] Ramshetty K Sure and Savitha Patil ,” Android Based Autonomous Coloured
Line Follower Robot”, International Journel of Research and Technology, Vol.
3, May 2014.

[4] Z. Macarthur, "Compliant Formation Control of an Autonomous Multiple
Vehicle System," PhD thesis, University Of Florida, May 2006.

[5] L. Edwards, Open Source Robotics and Process Control Cookbook, 2nd Ed.,
Printce Hall, April 2005.

[6] G. D. Hager and K. Toyama, The XVision system: A General Purpose Sub-
strate for Real-Time Vision Applications,' Computer Vision and Image Un-
derstanding, vol. 69, pp. 23-27, January 1998.

[7] C. Wren, A. Azerbaijani, T. Darrell, and A. Pentland, "Real-Time tracking of
the human body,'' IEEE Trans. on PAMI, vol. 19, no. 7, pp. 780-785, 1997.

[8] S. Asaad, A low-cost, real-time, intelligent vision sensor, Master's thesis, Van-
derbilt University, Electrical Eng., 1995.

[9] M. Borg et al., "Evaluation of object tracking for aircraft activity surveillance,''
(Beijin), Oct. 2005.

[10] J. Shi and C. Tomasi, "Good Features to Track,'' IEEE Conf. on Computer
Vision and pattern Recognition, pp. 593-600, 1994.

[11] Y. Bar-Shalom and X. Li, "Multitarget-Multisensor Tracking: Principles and
Techniques,'' YBS Publishing, 1995.

[12] J. Black and T. Ellis, "Multi Camera Measurement and Correspondence,'' J. of
the International Meas. Confederation, vol. 35, no. 1, pp. 61-71.

[13] Y. Cai, N. Freitas, and J. Little, Robust visual tracking for multiple targets,
Master’s thesis, University of British Columbia, September 2005.

[14] M. Swain and M. Stricker, "Promising directions in active vision,'' Int. J. of
Comp. Vision, vol. 11, no. 2, pp. 109-126, 1993.

[15] Tarek Said, Samy Ghoniemy and Omar Karam, “Real-Time Multi-object
Detection and Tracking for Autonomous Robots in Uncontrolled Environ-
ments,” IEEE 7th International Conference on computer engineering and systems
(ICCES 2012), Cairo, Egypt, November 2012.

[16] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of
simple features,” Proceedings of the 2001 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1, 2001.

[17] O. Community, “OpenCV Reference Manual,” October, pp. 1–1104, 2010.
[18] Freksa, R. Moratz, and T. Barkowsky, “Navigation with schematic maps,”

Intelligent Autonomous Systems, University of Hamburg, April 2005.
[19] J. Aguilera and et al., "Visual surveillance for airport monitoring applica-

tions,'' 11th Comp. Vision Winter Workshop, 2006.

1143

IJSER

http://www.ijser.org/

INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015
ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

[20] Wessam Elhefnawy, Gamal Selim, Samy Ghoniemy, ”Robust Hybrid Fore-
ground Detection Adaptive Background,” IEEE Int. Conf. on information
science and applications (ICISA 2010), April 21-23, 2010, Seoul, Korea.

[21] M. Piccardi, ‘‘Background subtraction techniques: a review,’’ IEEE Conf. on
Systems, Man and Cybernetics, vol. 4, pp. 3099-3104, October 2004.

[22] C. Wren, A. Azrbayejani, T. Darrell, A.P. Pentland, ‘‘Pfinder: real-time
tracking of the human body,’’ IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 19, no.7, pp. 780-785, 1997.

[23] M. Shah and O. Javed, K. Shafique, “Automated visual surveillance in
realistic scenarios”. IEEE Multimedia, vol. 14, no. 1, pp. 30-39, 2007.

[24] I. Haritaoglu, D. Harwood, L.S. Davis, ‘‘W4: real-time surveillance of peo-
ple and their activities,’’ IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 22, no. 8, pp.809--830, August 2000.

[25] C. Stauffer and W.E. Grimson, “Adaptive background mixture models for
real time tracking,” IEEE Proc. CVPR, pp.246-252, June 1999.

[26] K. Toyama, J. Krumm, B. Brumitt, B. Meyers, ‘‘Wallflower: principles and
practice of background maintenance,’’ IEEE Conf. Computer Vision, vol. 1,
pp. 255-261, 1999.

[27] K. Toyama, J. Krumm, B. Brumitt, B. Meyers, ‘‘Wallflower: principles and
practice of background maintenance,’’ IEEE Conf. Computer Vision, vol. 1,
pp. 255-261, 1999

[28] M. Gelgon and P. Bouthemy, “A region-level motion-based graph repre-
sentation and labeling for tracking a spatial image partition,” Pattern
Recognition, vol. 33, pp. 725–740, 2000.

[29] David B. Kirk and Wen-mei W. Hwu, Programming Massively Parallel Pro-
cessors: A Hands-on Approach, Elsevier Science, pp. 14-16, 2012.

[30] Luebke, D., "CUDA: Scalable parallel programming for high-performance
scientific computing," Biomedical Imaging: From Nano to Macro, 2008. ISBI
2008. 5th IEEE International Symposium on, pp.836-838, 14-17 May 2008.

[31] CUDA zone, nVidia, URL: http://www.nvidia.com/object/cuda_home.html, last
visited, August 2015.

[32] NVIDIA CUDA Programming Guide, August 2015.
http://developer.download.nvidia.com

[33] J. Sanders and E. Kandrot , “CUDA by example: an introduction to gen-
eral-purpose GPU programming,” Addison-Wesley Professional, 2010.

[34] CUDA Programming Guide v7.0, March 2015,
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[35] R. Uribe-Paredes et al., “Similarity search implementations for multi-core
and many-core processors,” High Performance Computing and Simulation
(HPCS), 2011 International Conference on, pp. 656-663, 2011.

[36] M. Daga, A. M. Aji, and W. Feng, “On the Efficacy of a Fused CPU+GPU
Processor (or APU) for Parallel Computing,” 2011 Symp. Appl. Accel.
High- Performance Compute. pp. 141–149, 2011.

[37] In Kyu Park, Nitin Singhal, Man Hee Lee, Sungdae Cho, and Chris Kim.
Design and Performance Evaluation of Image Processing Algorithms on
GPUs. IEEE Transactions on Parallel and Distributed Systems, 2010.

[38] Victor W. Lee et al., “Debunking the 100X GPU vs. CPU myth: an evalua-
tion of throughput computing on CPU and GPU,” SIGARCH Comput. Ar-
chit. News, 38(3):451–460, 2010.

[39] Montañés Laborda, MA, Torres Moreno, EF, Herrero Jaraba, JE and Mar-
tínez del Rincón, J, 'Real-time GPU color-based segmentation of football
players' Journal of Real-Time Image Processing, vol 7, no. 4, pp. 267-279, 2012.

1144

IJSER

http://www.ijser.org/
http://www.nvidia.com/object/cuda_home.html
http://developer.download.nvidia.com/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

