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Abstract— This paper presents the integration of a proposed enhanced multi-object color tracking, Partitioned Region Matching (PRM), 

and Spatial Region Graph (adjacency graph)  for real time multi-object tracking. The problem of real-time object tracking is addressed by 

employing feature-based tracking technique that focuses on the integration of color feature tracking in regions of interest, and motion 

estimator which  directly exploits computation of the region-level motion vectors through Partitioned Region Matching (PRM) that is based 

on the presence of gradients and semantically identify them according to their energy and other motion parameters. The preprocessed 

information are then converted to a spatial region graph (SRG) which is used as a starting point of a Markov Random Field (MRF) process, 

where regions are merged according to their semantics. The execution of the proposed system using GPU (NVIDIA GeForce GT 740M) 

showed that the processing time is enhancement by an order of 64% compared with its execution using CPU, which enabled an efficient 

onboard processing as well as centralized real-time processing of surveillance data, images and videos. The proposed method maps 

perfectly onto GPU architecture and has been implemented using NVIDIA CUDA. Experimental results on GPU for a sequence of frames, 

each of 460x480 pixels, showed that the implementation on GPU is 64 times faster than on CPU and confirmed the ability to process 

approximately 62 frames/s satisfying the necessary requirements for the correct subsequent tracking and reaching real time performance 

that demonstrates the suitability of the proposed system for real-time video surveillance.  

Index Terms— GPU-based real-time tracking, Moving object tracking, Multi-object color tracking, Partitioned Region Matching, Remote 

video surveillance, Spatial region graph, GPU-CUDA.  

——————————      —————————— 

1 INTRODUCTION                                                                     

owadays, object tracking is a mature discipline aiming to 
define techniques and systems for processing videos 
from cameras placed in a specific environment. Tracking 

an object in video has a variety of real world applications; 
these include autonomous aerial reconnaissance, remote sur-
veillance, and advanced real time collision avoidance systems.  

Computer vision image processing algorithms were used to 
allow the computer to understand the contents of the image of 
multidimensional data and track specific color combination 
[1], [2], [3] to avoid the target mismatching. These research 
openings allowed extracting specific information from the 
image for a specific purpose such as controlling industry robot 
or an autonomous vehicle [4], [5]. Computer vision systems 
use digital gray-scale or color image data [6], [7], [8], [9], [10] 
to solve a specific task. Other computer vision systems use 
two or more images from a stereo camera pair, a video se-
quences, or a 3D volume [11], [12] to solve the same problem. 
Most of these computer vision systems are pre-programmed; 
and they are not completely suitable for real-time tracking 
systems. The reason for this is, because most of the computer 
vision systems study the tracking problem as a purely tech-
nical image processing problem depending on the software 
developments.  

Tracking moving objects in the real time is a complex prob-
lem and many extensive studies conducted over the last few 

years tried to enhance these approaches. However, impressive 
tracking systems have been developed for some specific appli-
cations [13], [14], [15]; they showed a lack of the navigation 
enhancement for these moving objects and failed to integrate 
with a complete remotely controlled environment.  

HAAR like features are image features used for object de-
tection and recognition. It is one of the fastest and most accu-
rate object detection algorithms. The term “HAAR-like fea-
tures” origins from the calculation of Viola and Jones [16] 
which works with HAAR wavelet transform method, a win-
dow of the target size is moved over the input image, and for 
each subsection of the image the HAAR-like feature is calcu-
lated. This difference is then compared to a learned threshold 
that separates non-objects from objects. The discrimination 
between objects and non-objects is achieved by the learning 
phase. A set of both positive and negative images is fed to the 
HAAR trainer, from which the classifier is extracted. After the 
training phase, the classifier could be applied to a region of 
interest on the captured frame from the video. The classifier 
outputs "1" if the region contains an object and "0" otherwise. 
To search for an object in the whole frame, sliding window 
technique is applied, whereas a window (of fixed size as that 
used during training) is moved across the image [17]. 

Agrawal proposed a design, which will have a great impact 
on video surveillance systems, whereas a segmentation is used 
after background subtraction and background estimation, this 
was used to reduce noise and locate a moving target in a 
frame. For multiple moving objects detection in poor lighting 
conditions, wavelet-based contrast change detector was inte-
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grated with locally adaptive thresholding scheme for initial 
frames. For later frames latest change detector mechanism was 
used. This has significant results for surveillance systems, 
where the camera is mounted in a stable location, but for 
handheld devices [1]. 

The main problems in this research are the robustness of 
the tracking algorithm especially for fast moving objects and 
system integration. The gab between the capabilities of the 
vision system and the embedded processing system still a 
challenging subject, and many proposed systems in this pro-
spective have been published, such as in [18], [19]. In these 
systems, motion planning is integrated with the tracking sys-
tem in order to improve the overall system capabilities. The 
main drawbacks of these systems are their burden in the inte-
gration with the highly sensitive vision systems. Robust and 
fast image processing techniques, and embedded MCU based 
systems for robot motion control still require a noticeable en-
hanced navigational multi-object color tracking algorithms. 

The organization of this paper starts with an introduction 
in Section 1. In Section 2, the theory of multi-object motion and 
color tracking is introduced then hybrid background removal, 
partitioned region matching and spatial region graph for multi 
object motion tracking are deeply discussed, also experimental 
results and analysis of this part are presented. In Section 3 a 
modified multi-object tracking algorithm using multi-core 
processor and GPU together with its experimental results are 
presented. Finally Section 4 includes the summary and some 
conclusions. 

2 MULTI OBJECT MOTION AND COLOR TRACKING 

USING SINGLE PROCESSOR 

The process of detecting objects is to analyze the information 
in the image, to create state measurements that enable to track 
moving objects. There are two methods that are useful for mo-
tion detection. The first technique is based on adaptive thresh-
old , while the second is the color detection using hue segmen-
tation [15]. After the detection the problem is to track and rec-
ognize these moving objects and preserve their locations even 
if any object stops its motion. In this section a multi-object col-
or tracking model will be introduced, the model integrates the 
motion and color tracking taking the advantages of the two 
methods to optimize the processing time 

2.1 Multi-Object Motion Tracking 

The proposed multi-object motion tracking started by imple-
menting the simplest frame difference approach with a modi-
fied dynamic (global) threshold technique in which the 
threshold is extracted from the histogram of the current frame 
to be suitable for lighting conditions changing and to over-
come the limitations of previously published techniques that 
were based on static threshold assumption [15]. The modified 
algorithm is implemented and tested under different condi-
tions to verify its robustness and its validity in detecting ob-
jects without false motion or missing motion detection.  

This algorithm is further modified by introducing the novel 
“Sequential Connected Component Algorithm with Feed-
back”. In this algorithm, a search is conducted for all points 

that represent an object using frame difference in order to de-
tect the area in which motion takes place and then feedback is 
used to update previous locations. The proposed algorithm 
was implemented and enhanced using multithreading in 
which the system automatically creates a thread for each de-
tected motion area and whose computations can then be done 
separately. In this proposed algorithm, the motion tracking 
computations are done by taking a ROI of W×H pixels around 
each centroid according to the experimental environment (Ro-
bot Speed, Camera Height) as given in the following equation, 
 :  { ,    / }ROI W H V DT   (1) 

where DT is the time difference between two frames. 
Experiments showed that the proposed system is able to 

identify the locations of all objects with no false alarms or 
missing motion areas as shown in Fig. 1. 

The time enhancement was measured during many exper-
iments and it was found that for a few number of objects, the 
proposed system using multi-threading takes around 19 to 
59% of the time using the traditional full frame difference 
technique. Fig. 2 shows the calculated processing time accord-
ing to number of objects via ROI vs. the full frame processing 
time. 

 
Fig. 1. Experimental results of a multi object motion tracking algorithm. 

Fig. 2. Calculated processing time according to number of objects using 
multithreading. 

Table 1 shows the computation time to track multiple ob-
jects using the proposed algorithm (Average overhead compu-
tation time is 150 msec for (Frame header + Fill Matrix + Glob-
al threshold calculation + Labeling)) and using traditional 
techniques for different numbers of objects. The average com-
putation time is reduced by approximately 60%. 
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TABLE 1 

COMPUTED TRACKING TIME USING THE PROPOSED ALGORITHM VS. 
USING THE TRADITIONAL ALGORITHM. 

The average error between the actual and the measured tra-
jectories after applying the multi-threading motion tracking 
algorithm of two tracked objects at certain locations in speci-
fied frames is measured and drawn as shown in Fig. 3. 

The average error is found to be less that 0.07% under dif-
ferent environmental conditions and the algorithm is stable 
towards stopped objects. 

Fig. 3. Experimental results of the integrated multi object motion tracking 
algorithm. 

The main drawback that emerged after testing many situa-
tions is that the system gets confused if the edges of two or 
more objects touch each other or objects areas overlap. To 
solve this problem a modified color tracking algorithm is pro-
posed and discussed in Section 2.2. 

2.2 Multi-Object Color Tracking 

The main goal of artificial vision applications is to simulate the 
human vision skills such as recognizing object movements and 
track them in complex environments. A commonly applied 
technique to identify moving objects is background removal 
(subtraction) as it was discussed in Section 2.1. In general, 
background removal algorithm pass throw four steps which 
are pre-processing, background modeling, foreground detec-
tion and data validation [20]. For the purpose of designing an 
accurate background removal algorithm features such as; size 
(pixel, block, or cluster) and type (color, edge, stereo, motion 
and texture) must be chosen carefully with respect to the ap-
plication and it should be able to accurately detect shapes (i.e. 
not affected by shadows, highlight, etc.), be reliable in differ-
ent light conditions and movements of background objects, 
flexible to different scenarios (indoor and outdoor) and com-
putationally efficient. On the other side, as a fact, the color of 
an object in video streams can differ quite significantly from 
what is seen using naked eye. Many environmental factors can 
affect the color of an object in the video exposure of the cam-
era, such as white balance setting, ambient lighting, and reflec-
tion of the spot lights.  

For these purposes, many significant research efforts had 
been published to address this problem such as in [21], in 
which Median Filter (MF) and approximated median filter 

(AMF) were used.  The results in this publication showed that 
although MF is fast and simple, it needs high memory re-
quirements, while AMF is considered a good technique only 
for indoor applications and it suffers from slow adaptation 
when there is a large change in background. Other research 
groups such as in [22], [23] proposed statistical models. In [22], 
statistical models were designed based on color and shape 
features where researchers in [23] used statistical models of 
gradients and color to classify pixels and keeps six values per 
pixel for gradient/color information, and region mapping. The 
algorithm works by grouping the foreground pixels in regions 
based on their color, and then checks their boundaries for 
foreground gradients, and keeps those whose boundary over-
laps with detected foreground gradients. 

As these algorithms fail to deal with complex outdoor 
scenes, the need for other statistical methods like W4 ap-
peared. W4 system uses a bimodal background model keeping 
three values per pixel: minimum intensity, maximum intensi-
ty, and maximum intensity difference between consecutive 
frames [24]. Initially the background is constructed using MF 
and is then updated based on the change map, the major 
drawback of this algorithm is the high memory requirements. 

A very popular technique in surveillance systems for out-
door scenes is Stauffer Mixture of Gaussian (MoG) [25], which 
is adaptive, online, and can handle multimodal backgrounds. 
MoG maintains a probability density function (PDF) for each 
pixel and thus has intermediate to high memory requirements. 

One of Several methods to deal with multi-modal distribut-
ed background pixels is Wallflower [26], which employs a lin-
ear Wiener filter to learn and predict background variations. 
Although Wallflower works well for periodically changing 
pixel, it is less effective when background pixels change dra-
matically or the movements of those background pixels are 
less periodically. 

All these algorithms faced many problems such as similar 
color appearing in foreground and background areas, change 
of lighting condition and noise. To overcome these problems 
and to obtain a robust segmentation algorithm, a hybrid back-
ground removal algorithm will be discussed below. 

2.2.1 Hybrid background removal algorithm  

In this section, a proposed hybrid background removal algo-
rithm that preserves the accurate boundary of moving object is 
discussed. Fig. 4 illustrates the overall structure of the pro-
posed algorithm which consisite of four sequential stages. 

In the first stage background model is trained in RGB color 
space from certain number of frames; the background model 
(Bi) is modeled by calculating the mean and standard devia-
tion (, ) for each pixel. In the second stage, the current frame 
(Ii) is subtracted from the background model (Bi), then a pre-
determined threshold is used to detect the foreground binary 
mask (Fsi).  At the same time a single 3D Gaussian distribution 
is used to detect the foreground binary mask (Fgi) and an 
ANDing is performed to combine FSi and Fgi leading to the 
common foreground binary mask (FCi). Next a simple con-
nected component method is used to get the boundaries of the 
region of interest (ROI) from the common foreground binary 
mask (FCi) results from the previous stage then the edges of 
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the moving objects is detected using the frame difference (FD) 
algorithm while its area is filled using simple line segmenta-
tion method and shadowes are removed. The last stage is to 
validate region pixels using Fs, Fg and the output from line 
segmentation, then the background model (Bi) is updated re-
cursively using Gaussian running average filter. 

 
Fig. 4. Block diagram of the proposed adaptive background removal 
algorithm. 

The proposed technique was evaluated using the Wallflow-
er sequences, 120x160 color images [27] and compared to some 
commonly used detection techniques. To evaluate the perfor-
mance against each sequence, False Positive (FP), False Nega-
tive (FN), and total error (TE) are used. FP is the number of 
wrongly marked background pixels as foreground; FN is the 
number of wrongly marked foreground pixels as background; 
TE is the sum of FP and FN for each sequence. For the overall 
performance evaluation, TET is the sum of total error for all 
image sequences. Fig. 5 shows the results obtained by using 
the proposed technique compared with several other state-of-
the-art methods. From Fig. 5, it is concluded that the proposed 
technique achieves the most accurate overall performance of 
total error (TE) for image sequence of moved object among the 
competitive methods even though there is no elimination for 
the foreground pixels whose 4-connected foreground pixels 
number less than 8 as other methods did. 
 

Fig. 5. Overall performance obtained by using the proposed technique compared 
with several other state-of-the-art methods. 

2.2.2 Enhanced hybrid background removal algorithm  

In practice, the performance of this technique is largely de-
graded because the color of an object in video streams can dif-
fer quite significantly from what is seen using naked eye. Prac-
tically, many environmental factors can affect the color of an 
object in the video exposure of the camera, such as white bal-
ance setting, ambient lighting, and reflection of the spot lights. 
Theoretically, an object of red color should have the RGB val-
ue of (255, 0, 0), in practice, one can never find such value alt-
hough the object is really red in color when seeing it with na-
ked eyes. Testing the RGB values produced by the camera at-
tached to server showed that they do not give enough infor-
mation to identify all objects in the region of interest. So, it is 
more reasonable to convert the representation of colors into 
suitable color space in order to catch all color specifications. 
Many color spaces like CMY, HSV, XYZ, and YCbCr are ana-
lyzed, from them the HSV gave the best results and found to 
be closer to human perception. The HSV color space provides 
us with a component containing the color wavelengths called 
Hue (H) which defines the set of the color, Saturation (S) 
which defines how pure the color will be, and Value (V) which 
defines the brightness of the color as shown in Fig. 6. 

 
Fig. 6. HSV Color Model. 

In this model, segmentation by hue is achieved by setting 
all pixels that have a hue in a specific range around the hue of 
the background to belong to the background. Pixels with a 
different hue are set to be objects. The range of hues which 
will be classified as background is selected by examination of 
the hue component’s histogram, where the background will 
have a distinct peak. The main advantage of this method is 
that effects of lighting and shadows can be reduced since the 
intensity and saturation information is separated from the hue 
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component in the HSV color space.  
Testing the traditional multi-object color tracking technique 

showed that there exist two main problems. The first problem 
is that it requires a long processing time for full frame color 
transformation which is not suitable for real time applications. 
Therefore, more modifications are proposed to minimize the 
processing time in which color transformation is applied only 
for regions around the extracted centroids of targets. 

Fig. 7 illustrates the flowchart of the integrated motion and 
modified color tracking algorithms after applying the color 
space transformation for the regions of interests. 

Fig. 7. Flowchart of enhanced motion and color tracking algorithms. 

In this model, segmentation by hue is achieved by setting 
all pixels that have a hue in a specific range around the hue of 
the background to belong to the background. Pixels with a 
different hue are set to be objects. The range of hues which 
will be classified as background is selected by examination of 
the hue component’s histogram, where the background will 
have a distinct peak. The main advantage of this method is 
that effects of lighting and shadows can be reduced since the 
intensity and saturation information is separated from the hue 
component in the HSV color space. A disadvantage of this 
model is that it is usable only when there are enough colors in 
the image. 

The proposed model enhancement allows color transfor-
mation of areas corresponding to theoretically more than 50 
objects/frame at a frame size of 400×400 pixels while the tradi-
tional algorithm just makes color transformation of the given 
frame. Since the average number of objects in the frame is 8 
objects to keep the details of objects, then many tasks can be 

done during the saved time.  
Fig. 8 shows the theoretical number of objects at different 

times at frame of 400x x400 pixels. 

Figure 8: Procesing time enhancement using multi-threading techniques. 

The second problem appeared when more than one color 
exist and more than one object have the same color leading to 
different areas with the same label after color segmentation. 

The labeling here is therefore nested in order to cover all 
objects of different colors. For each color i, assign label Li, scan 
full frame, and the objects of that color are labeled Li0, Li1 … 
LiN. So, the more the colors, the more processing time needed. 
The proposed model implements one level labeling which 
reduces the time needed to that of a single full frame scan by 
integrating motion tracking with color tracking. 

Fig. 9 presents some of the experimental results using the 
modified multi-object color tracking algorithm. This figure 
shows that no false alarms or missing objects during the ex-
periment for 120 frames. 

  
Fig. 9. Experimental results of the enhanced integrated multi object motion 

and color tracking algorithm. 

The average time enhancement using the multi-threading 
technique after many experimental measures was found to be 
54% of the traditional multi-object color tracking when the 
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number of objects is less than 15. Table 2 compares the pro-
cessing time for different cases using multi-threading and tra-
ditional color tracking algorithms. 

TABLE 2 
 PROCESSING TIME USING MULTI-THREADING COMPARED WITH 

TRADITIONAL MULTIOBJECT COLOR TRACKING TECHNIQUES. 

 
Testing this technique showed that the required processing 

time and memory requirements are nonlinearly increasing 
functions with respect to the number of objects and even gets 
worth in case of different object shapes/geometries such as in 
tracking multiple persons. This indeed not suitable for real 
time applications such as in case of survelance applications. 
Therefore, more modifications will be proposed in the follow-
ing section to minimize the processing time and memory utili-
zation for real time survelance applications.  

2.3 Partitioned Region Matching and Spatial Region 
Graph (SRG)  for Multi Object Motion Tracking 

In this proposed enhanced approach each frame of the se-

quence is segmented into regions by using color with the as-
sumption that each region contains only one object as dis-

cussed in Section 2.2. In this section this assumption is more 

modified by assuming that each region may contain a part of 

one object. This algorithm consists of two major phases.  
Phase 1- color-based region segmentation and SRG creation, 

for this task the following tasks are performed: 

1) Color segmentation is implemented based on the region 

growing algorithm using the proposed algorithm in Section 

2.2.2, then;  

2) A Spatial Region Graph (SRG) is created, in which nodes 

with attributes (area size, the coordinate of the bounding-
box and the centroid’s position) represent regions, whereas 

arcs (edges) represent topological adjacencies (predicates).  
Phase 2- object motion estimation and regions merging, for 

this task the following tasks are performed: 

1. With the assumption that camera and objects are slowly 

moving, the motion estimation algorithm computed with 
the adoption of the translational motion model in which 

the region-level motion vectors (velocity and reliability) are 

directly computed for each region using Partitioned Region 
Matching that is based on classical Sum of Absolute Differ-

ences (SAD) over each region, and are then stored in the 

Spatial Region Graph (SRG) as an update, then; 

2. Regions with similar motion are merged according with an 
energy function influenced by the motion vectors  using 
Markov Random Field (MRF) process [28]. As proposed in 
[28], the energy function is composed by three terms: the 
first term (U1) represents the motion, the second term (U2) 

represents the geometrical regularization, and the last term 
(U3) represents the number of broken arcs (pairs of regions 
geometrically adjacent but with different labels). This ener-
gy function is given by; U(e, o) = U1(e, o) + U2(e) + U3(e), 
where e and o are the labels and the observation fields, re-
spectively, then; 

3. Background and objects identification starts. In this algo-
rithm, the largest region after merging similar regions that 
exhibit similar motion (i.e., the Euclidean distance in the 
velocity space must be under a suitable threshold) is classi-
fied as background and its motion as the motion of the 
camera, while other regions are classified as moving objects 
and temporal continuity of motion field is supposed to per-
form a prediction of the next frame. 

4. The final step is the prediction step, which is used to restart 
the region-level MRF process for the analysis of the next 
frame. 

5. Repeat. 

Fig. 10. Flowchart of multi object motion tracking using partitioned region 

matching (PRM) and spatial region graph (SRG). 

2.3.1 Experimental results 

In order to study the efficiency of the above algorithms, the pro-
posed system has been implemented and evaluated on the Wall-
flower dataset sequences [26]. The video sequences composed of 

50 frames, these sequences are: 
Moved Object: A person enters into a conference room, makes a 
telephone call, and leaves. The background is evaluated using 50 

 

Color transformation and segmentation 
using region growing algorithm 

Co
lo

r-b
as

ed
 re

gi
on

 se
gm

en
ta

tio
n 

an
d 

SR
G 

cr
ea

tio
n

Spatial Region Graph (SRG ) Creation

Motion estimation  using 
Partitioned  Region Matching (PRM) 

algorithm 

O
bj

ec
t m

ot
io

n 
es

tim
at

io
n 

an
d 

re
gi

on
 m

er
gi

ng

Regions merging using 
Markov Random Field (MRF) process 

Last Frame?

Last Region?
Update Region 

label

Update Frame 
Sequence

Frame Sequence

…..

Classification for Background and 
objects identification 

No

No

Yes

Yes

Tracked objects

1138

IJSER

http://www.ijser.org/


INTERNATIONAL JOURNAL OF SCIENTIFIC & ENGINEERING RESEARCH, VOLUME 6, ISSUE 8, AUGUST-2015                                                                                         
ISSN 2229-5518 

 

IJSER © 2015 

http://www.ijser.org  

frames after the person leaves the scene. 
Time of Day: A darkened room that gradually becomes brighter 
over several minutes. A person enters into the room and sits 
down. 
Light Switch: First as a training stage the camera sees a room 
with the lights both ON and OFF for long period. Then the room 
starts with the lights OFF. After a few minutes a person enters the 
room turns ON the light, and moves a chair. The foreground ob-
jects are both the person and the moved chair is considered fore-
ground. 
Waving Trees: A swaying tree and a person walks in front of it. 
Camouflage: A rolling interference monitor with bars sits on a 
desk. A person walks into the room in front of the monitor. 
Bootstrapping: The sequence shows several minutes of an over-
head view of a busy cafeteria, where every frame contains people. 
Foreground Aperture: A back view of a sleeping person, with a 
uniformly colored shirt, at his desk, viewed from the back. He 
slowly wakes up and begins to move. 

To evaluate the performance against each sequence, FP, FN, 
and TE are used. For the overall performance evaluation, TET, the 
sum of total error for all image sequences is used. The proposed 
evaluation tests are; (1) ground-truth tests (i.e. tests with manual-
ly segmented frames as ground-truth) have been performed to 
evaluate the efficacy, (2) a time analysis test has been carried out 
to study the capability of the proposed system to satisfy real-time 
requirements. The proposed system is executed on a Dell Lati-
tude E5530 laptop with a 2.5 GHz i5 processor, 8 GB RAM, and 
Windows 7 64-bit.  
1- Performance evaluation 
The FP, FN, and TE errors obtained for the foreground aperture 
and waving trees sequences using the proposed system and other 
12 published systems are presented in Figures 11-13. 

Fig. 11. False Positive (FP) error points of still objects or of the 
background wrongly marked as belonging to moving objects. 

Fig. 12. False Negative (FN) error points or moving objects’ points that are 
not detected or wrongly marked as belonging to background. 

 

Fig. 13. Total error (TE), the sum of total error for all image sequences. 

 
Taking all together, Figures 11-13 show that the proposed 

system gives satisfactory results in terms of accuracy of seg-

mentation and motion detection.  
2- Computational performance evaluation 
Computational time analysis has been carried out using differ-
ent frame sizes such as 100x100, 120x160, 200x200, 400x400, 
640x480, 900x450, and 1024x768 to present a detailed time 
analysis that shows the cost of each phase and their possible 
dependencies on application parameters. Fig. 14 illustrates the 
computational time of color segmentation, spatial region 
graph (SRG), object motion estimation using PRM and regions 
with similar motion merging using broken arcs-based MRF 
process for one 200x200 frame versus different number of re-
gions at maximum region shift of 20 pixels. 

Fig. 14. Computational time for one 200x200 frame versus different 
number of regions at maximum region shift of 20 pixels. 

 
Taking all together, Fig. 11–to- Fig. 14, it is concluded that 

the necessary computational time for the color segmentation 
and SRG phase approximately does not depend on the num-
ber of regions, instead largely depends on the frame size, tak-
ing into account that SRG processing time is affected only by 
the number of nodes representing the adjacent regions and 
their connecting arcs. It is also concluded that the computa-

tional time  for motion estimation depends not only on the 
frame size but also on the number of regions and the size of 
region shift. Finally, the processing time required for MRF 
increases nonlinearly with the number of regions which in 
turn affects the PRM especially for larger size of region shift. 
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3 MULTI OBJECT TRACKING USING MULTI-
CORE PROCESSOR AND GPU  

When looking at the execution time of the whole algorithms 
proosed in Section 2, it was concluded that the processing time 
of the color segmentation, SRG creation and motion estimation 
is largely depends on the frame size, the number of regions 
and the size of region shift. To reduce the number of computa-
tions required, all operations are restricted to a region-of-

interest (ROI) or window. Yet, region growing still the most 
consuming processing power. Therefore it will be reasonable 
to implement this feature on the graphics processing unit 

(GPU) since the programmable GPU is specialized for highly 
parallel computations, multi-threaded, and many-core proces-
sor with tremendous computational processing power and 
very high memory bandwidth. 

Recently, many parallel programming interfaces have been 
proposed, among them, the compute unified device architec-
ture (CUDA) [29], [30] has become one of the most practical 
parallel computing platform and programming model invent-
ed by NVIDIA [31], [32], [33]. CUDA enables dramatic in-
creases in computing performance by harnessing the power of 
the GPU, utilizing two other types of memory access, shared 
memory and global memory, on top of the texture cache units 
as well as the utilization of its execution model which involves 
kernels, threads, blocks and grids.  

From the programmer’s point of view, every program con-
sists of two parts, a host code (called host) run on CPU, and a 
kernel, a piece of code (called device) run in parallel on GPU. 
CUDA’s extensions to the C programming language allow 
programmer to define how many threads performing a kernel 
will be executed on a device. The number of threads can great-

ly (up to 10,000) exceed the number of processing units 
which execute the program. This paradigm allows program-
mers to consider GPU as an abstract device providing a huge 
number of virtual resources. Therefore, not only it provides a 
good scalability, it also allows to hide a global memory latency 
by very fast thread switching. The threads executed on GPU 
form a 1D, 2-D, or 3-D structure, called a block. The blocks are 
arranged in 1D or 2-D layout, called a grid. Thus, each thread 
can be exclusively defined by its coordinates within a block, 
and by coordinates of its block within a grid. Each block of 
threads is executed on a single streaming multiprocessors 
(SMs); therefore, all threads of a single block can share data in 
a shared memory. Block’s threads are executed in warps of 32 
threads each, as shown in Fig. 15 [34]. A memory hierarchy is 

introduced in a number of levels as shown in Fig. 16. In the 
lowest level, there are small, fast, non-shared registers. Then, 

each SM contains a shared memory. CUDA threads may ac-

cess data from multiple memory spaces during their execution 

as illustrated by Fig. 17.   
The proposed implementation uses a 2D grid although it is 

based on a 1D grid. The conversion is carried out by each ker-

nel. The kernel’s job is to scan for the features on a single ROI, 
keeping in mind that the algorithm yields different window 

sizes (i.e. scales) which requires pre-scaled features and win-

dow information such as the x and y position of the window 

and the window size. The features set consists of different 

stages cascaded together. Each window will pass through all 
stages till the end. 

Fig. 15. GPU Automatic Scalability [34]. 

 
Fig. 16. Threads hierarchy in CUDA programming model [34]. 

 
Fig. 17. Memory hierarchy in CUDA programming model [34]. 
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The features set consists of different stages cascaded to-
gether. Each window will pass through all stages till the end. 

This set of features is done sequentially, meaning that each 

kernel will not need to scale the features nor scale the image 

itself, in other words the kernel’s job is to evaluate features 
and stages for its specific window. To avoid memory latency 

and maximum memory bandwidth, the data is sorted accord-

ing to the scale following by the X and Y position of each win-
dow [35]. The number of kernels is equal to the number of 

search windows which varies according to the image size 

used. Fig. 18 shows the number of search windows vs the im-
age size, it is noted that the number of search windows 

increases in a cubic manner, which helps in evaluating the 
proposed system. 

Fig. 18. Number of Search Windows vs. Image Size (pixels). 

 
Since GPUs are based on PCI Express (PCIe), additional 

overhead costs are resulted from host-to-GPU data transfers 
and vice versa, which may cause application bottleneck at data 
transfer. Many researchers such as in [36] proved that this 
process consumes time and processing power, which derived 
researchers to search for other approachs to minimize the size 
of data allocated and shared from the host to each working 
item. For proper memory utilization and decreasing non-
necessary data allocation, all criteria and data passed needs to 
be studied to determine the dependency and data size. These 
parameters are the original image, integral image, the scaled 
feature set, the window upper left and lower right corner (X 
and Y) positions, and window step size. Some of these param-
eters are indispensable such as the original and integral imag-
es, and the scaled feature. The rest of the parameters could be 
substituted by equations. Therefore, the goal is to find a model 
that includes scale, step size, window upper left and lower 
right corners (X and Y positions), a modified window ID, 
number of windows per row, number of rows and total num-
ber of windows then relate them to the Kernel ID. 

3.1 Scale factor prediction model 

In order to find an equation that satisfies the scale values, scat-
ter plot as a diagnostic test to curve fitting is applied first. This 
helps to identify the model or set of models that would pro-
vide the least error (highest R Squared value). After testing 39 
models it was found that the Ratio of Polynomials Fit model 
given by (2) and illustrated in Fig. 19 leaded to the highest 

least error values, R2  0.996. 
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   (2) 

 
 

 
Fig. 19. PolyRatio (3, 3) Model for Scale Value estimation. 

3.2 Optimization of the GPU code 

Consulting the scatter plot, it is noted that the relation be-
tween the step value and the scale is a simple linear relation 

since it leaded to the highest square value of  0.999562. The 
main drawback in this model is its linear dependency on the 
step size, since as the scale increases the step size increases 
accordingly; which means higher possibility of undetected 
objects. For this purpose, a modified window model is pro-
posed as follow. 

The modification started by introducing two variables to 
evaluate both the X and Y start position of the window in the 
original image. After testing 39 models, it was found that no 
model will satisfy the whole data set, so the data set was di-
vided into smaller data sets according to the scale. Referring to 
Fig. 19, it is noted that the scale remains constant for a period 
of time and number of windows per scale (WPS) is given by (3), 

*PS PRW W NumOfRows  (3) 

in which, WPR represents the number of windows per each 
row and NumOfRows represents the number of rows in each 
image, and they are given by (4) and (5), respectively. 

 *
-

Width

PR Width

W Scale
W I

Step
  (4) 

 *
-

Width

Height

W Scale
NumOfRows I

Step
  (5) 

Where WWidth represents the window size, IWidth and IHeight rep-
resent the sample image width and height, respectively.  

The modified window ID would be incremental for every 
sub-data set and is given by (6), 

modified rangeWID W WID   (6) 

where WID represents the Kernel ID currently running.  
By applying this model we noticed that it gives extremely 

bad results on GPU, since branching was applied to detect the 
range for the data set, these conditions froze other working 
items due to the Single Instruction Multiple Data (SIMD) ar-
chitecture of the GPU. This means that not all methods are 
suitable for a massive parallel processing because the GPU 
performance is limited by several conditions: a) the ratio of 
parallel to sequential fraction of the algorithm, b) the ratio of 
floating point operations to global memory accesses, c) 
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branching diversity, d) global synchronization requirements 
and e) data transfer overhead [37], [38].  

Thus, the most desired goal is to split data into independ-
ent parts so that they can be processed in parallel. When a 
multiprocessor is given one or more thread blocks to execute, 
it partitions them into warps and each warp gets scheduled by 
a warp scheduler for execution. The way a block is partitioned 
into warps is always the same; each warp contains threads of 
consecutive, increasing thread IDs with the first warp contain-
ing thread 0. A warp executes one common instruction at a 
time, so full efficiency is realized when all 32 threads of a 
warp agree on their execution path. If threads of a warp di-
verge via a data-dependent conditional branch, the warp seri-
ally executes each branch path taken, disabling threads that 
are not on that path, and when all paths complete, the threads 
converge back to the same execution path. Branch divergence 
occurs only within a warp; different warps execute inde-
pendently regardless of whether they are executing common 
or disjoint code paths [34]. The number of blocks and warps 
that can reside and be processed together on the multiproces-
sor for a given kernel depends on the amount of registers and 
shared memory used by the kernel and the amount of regis-
ters and shared memory available on the multiprocessor. 
There are also a maximum number of resident blocks and a 
maximum number of resident warps per multiprocessor. 
These limits as well the amount of registers and shared 
memory available on the multiprocessor are a function of the 
compute capability of the device. 

Therefore, to enable the number of blocks and warps to be 
processed together on the multiprocessor for a given kernel, 
branch divergence is adopted and minimization of the branch 
condition true hit is applied as follow. 

The proposed enhanced model starts by calculating the pa-
rameter y which indicates whether the current kernel is within 
the data set range or not, and is given by (7), 

-1   if 
 -

0    if 
-

1    if 
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where RangeStart values represents the data set window ID 
range. Equation (7) is used to calculate the predictor, z, value 
and is given by (8), 
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if y
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The modified window ID could be estimated using (9),  

 -ModifiedWID WID range z   (9) 

To calculate both X and Y positions it necessary to use the 

modified window ID, hence the X and Y positions will also be 
within a sub-data sets, this is done using (10), (12), respective-
ly. 

 , ,Modified PR widthX WID W Step i   (10) 

where iWidth is given by (11), 

 - *
Width Width Width
i I W Scale  (11) 

The equation for Y position calculations is also presented in 
a single formula given by (12), 

Modified

PR

WID
Y Step

W

  
   
   

   (12) 

3.3 Experimental results 

The algorithms presented in Section 2 have been implemented 
by following the described method in Section 3, and the exper-
iments were conducted using the same image set on a Laptop 
HP Pavilion 15-N043se (Intel Core i7-4500U) with 4M Cache 

@1.8 GHz, 2.4 GHz, processor bus speed is 5 GT/s, 8 GB RAM, 
display card NVIDIA GeForce GT 740M (2 GB GDDR3 dedi-
cated), and Windows 7 64-bit. The computational time analy-
sis has been carried out using different frame sizes, namely 
100x100, 120x160, 200x200, 400x400, 640x480, 900x450, and 
1024x768, to present a detailed time analysis that shows the 
cost of each phase and their possible dependencies on applica-
tion parameters. Fig. 20 illustrates the computational time of 
color segmentation, spatial region graph (SRG), object motion 
estimation using PRM and region with similar motion merg-
ing using broken arcs-based MRF process for one 640x480  
frame versus different number of regions at dynamic number 
of regions and region shift in pixels. The illustrated results in 
Fig. 20 are calculated by negating the kernel compilation time, 
which only runs once on application startup. 

 
Fig. 20. GPU-based computational time for one 640x480 frame versus 

different number of regions at dynamic region shift. 

This figure shows that using GPU and optimizing the im-
plementation process have dramatically enhanced the accura-
cy, the computation time (the total processing time for 160 
regions is reduced from 1.46 sec to 22.81 ms which means the 
processing time is enhancement by an order of 64% compared 
with its execution using CPU), and memory allocation. 

Another metric usually employed to evaluate the compu-
ting capability of a real-time oriented system is the processing 
rate or rate. Rate measures how many frames are processed 
per second and is given by (13) [39]. 

1000 (ms)
 (FPS)=  (FPS)

 (ms)total

Rate
t

 (13) 
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in which ttotal is the total processing time of all stages for a sin-
gle frame.  
Using GPU optimized implementation and applying (13) the 
computed processing rate for 640x480 frames versus different 
number of regions is illustrated in Fig. 21. When applying (13), 
ttotal is substituted by the summation of processing time of col-
or segmentation, SRG, object motion estimation, and region 
merging.  

 
Fig. 21. GPU-based processing rate for 640x480 frames versus different 

number of region. 

Fig. 21 shows that using GPU optimized implementation 
and applying (13), the processing rate varies from 86 to 44 
frames per second when the number of regions varies from 10 
to 160, respectively and the average rate is 62 frames per sec 
satisfying the necessary requirements for the correct subse-
quent tracking stage (a minimum rate between 8 and 15 fps) 
and reaching real time performance for surveillance applica-
tions. 

4 CONCLUSION 

This paper proposed a multi-object visual color tracking algo-
rithm using multi-threading in real-time. Experimental results 
show that the proposed integrated system is stable towards 
stopped objects (using a constructed memory module), and 
partially occluded objects can still be detected, recognized and 
tracked using an added color feature. These results also show 
that the proposed system supports overlapped regions of in-
terest (ROIs) and reduced the average computation time by 
approximately 54% when multithreading is applied. This pro-
posal was further enhanced by including a hybrid background 
removal technique. The proposed enhancement is applied to 
different practical environments and proved to be effective in 
detecting and validating the foreground objects even under 
sudden illumination. The modified system is evaluated with 
Wallflower benchmarks and the experimental results are 
compared with popular background removal techniques and 
showed that the system offers comparable, better detection 
accuracy and proved to be robust with different background 
scenes.  
The problem of real-time object tracking is also addressed by 

employing feature-based tracking technique that focuses on 

the integration of color feature tracking in regions of interest, 

spatial region graph, and motion estimator which  directly 

exploits computation of the region-level motion vectors 

through partitioned region matching and Markov random 

field process, where regions are merged. The proposed meth-

od maps perfectly onto GPU architecture and has been im-

plemented using NVIDIA CUDA. Experimental results on 

GPU for a sequence of frames, each of 460x480 pixels, showed 

that the implementation on GPU leaded to the total processing 

time for 160 regions is reduced from 1.46 sec to 22.81 ms which 

means the processing time is 64 times faster than on CPU and 

the processing rate varies from 86 to 44 frames per second 

when the number of regions varies from 10 to 160, respectively 

and the average rate is 62 frames per sec satisfying the neces-

sary requirements for the correct subsequent tracking stage (a 

minimum rate between 8 and 15 fps) and reaching real time 

performance. These results demonstrate the suitability of the 

proposed algorithm for real-time video surveillance. 
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