
International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

FPGA Prototyping of Hardware Implementation
of CORDIC Algorithm

Er. Manoj Arora, Er. R S Chauhan, Er.Lalit Bagga

Abstract- In 1959 J. E. Volder presents a new algorithm for the real time solution of the equations raised in navigation system. This algorithm was the

best replacement of analog navigation system by the digital. CORDIC algorithm used for the fast calculation of elementary functions like multiplication,

division, trigonometric functions, logarithmic function, and various conversions like conversion of rectangular to polar coordinate, conversion between

BCD and binary coded information. In the present time CORDIC algorithm have a number of applications in the field of communication, 3-D graphics,

signal processing and a lot more. This review paper presents the prototype of hardware implementation of CORDIC algorithm using Spartan –II series

FPGA, with constraint to area efficiency and throughput architecture.

Index Terms : CORDIC; FPGA; Discrete Fourier Transform (DFT); Discrete Cosine transform (DCT); Iterative CORDIC; Pipelined CORDIC,SVD.

—————————— ——————————

1 INTRODUCTION

o-ordinate Rotation Digital Computer is abbreviated as

ORDIC. The main concept of this algorithm is based on

the very simple and long lasting fundamentals of two-

dimensional geometry. The first description for iterative

approach of this algorithm is firstly provided by Jack E.

Volder in 1959”[1]”. CORDIC algorithm provides an efficient

way of rotating the vectors in a plane by simple shift add

operation to estimate the basic elementary functions like

trigonometric operations, multiplication, division and some

other operations like logarithmic functions, square roots and

exponential functions. Most of the applications either in

wireless communication or in digital signal processing are

based on microprocessors which make use of a single

instruction and a bunch of addressing modes for their

working. As these processors are costs efficient and offer

extreme flexibility but yet are not suited for some of these

applications. For most of these applications the CORDIC

algorithm is a best suited alternative to that architecture

which rely on simple multiply and add hardware. The pocket

calculators and some of DSP objects like FFT, DCT, and

demodulators are some common fields where CORDIC

algorithm is found.

In 1971 CORDIC based computing received attention, when

John Walther showed that, by varying a few simple

parameters, it could be used as a single algorithm for

implementation of most of the mathematical functions.

During this period Mr Cochran invent various algorithms and

showed that CORDIC is much better approach for scientific

calculator applications. The popularity of CORDIC is

enhanced there after mainly due to its potential for efficient

and low-cost implementation of a large class of applications

which include the generation of trigonometric, logarithmic

and transcendental elementary functions; complex number

multiplication, eigenvalue computation, matrix inversion,

solution of linear systems and singular value decomposition

(SVD) for signal processing, image processing, and general

scientific computation. Some other popular and upcoming

applications are:

1) Direct frequency synthesis, digital modulation and coding

for speech/music synthesis and communication;

2) Direct and inverse kinematics computation for robot

manipulation;

3) Planar and three-dimensional vector rotation for graphics

and animation.

Although CORDIC algorithm is not a very fast algorithm for

use but this algorithm is followed due to its very simple

implementation and also the same architecture can be used for

all the applications which is based on simple shift- add

operation.

2 CORDIC ALGORTHM

CORDIC is acronym for COordinate Rotation DIgital

Computer. The CORDIC algorithm is used to evaluate real

time calculation of the exponential and logarithmic functions

using the iterative rotation of the input vector. This rotation of

a given vector (xi, yi) is realized by means of a sequence of

rotations with fixed angles which results in overall rotation

through a given angle or result in a final angular argument of

zero. Fig1.shows all the computing steps involved in CORDIC

algorithm.

C

__

 Er. Manoj Arora is currently working as head of department and assistant
professor in Electronics And Communication Engineering department in
JMIT,Radaur (INDIA)

 Er. R. S. Chauhan is currently working as assistant professor in
Electronics And Communication Engineering department in JMIT,Radaur
(INDIA).E-mail: chauhan@jmit.ac.in

 Er. Lalit Bagga is currently pursuing master’s degree program in
Electronics And Communication Engineering from JMIT, Radaur
(INDIA). E-mail: lalit.bagga@gmail.com

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

In the fig.1 “[1]” the angle αi is the amount of rotation angle

for each iteration and this rotational angle is defined by the

following equation:-

 α I = tan-12-1 (1)

Fig.1 CORDIC computing step

So this angular moment of vector can easily be achieved by

the simple process of shifting and adding. Now if we consider

the iterative equation as shown on the next page

 xi+1 = xi cos αi – yi sin αi

 yi+1 = xi sin αi + yi cosαi (2)

from equation (1), we can write as

 xi+1 = cos αi (xi– yi tan αi)

 yi+1 = cos αi (xi tan αi + yi)

Now here we define scale factor kn which is same as shown

below:

 Ki = cos αi or 1/√(1+2-2i)

So for the above written two equation we can rewrite them as

 xi+1 = (1/√(1+2-2i)) Ri cos(αi + θ)

 yi+1 = (1/√(1+2-2i)) Ri cos(αi - θ) (3)

OR xi+1 = ki (xi - 2-i yi)

 yi+1 = ki (yi + 2-i xi)

Now as shown in above equation the direction of rotation

may be clock wise or anticlockwise means unpredictable for

different iterations so for that ease we define a binary notation

di to identify the direction. It can equal either +1 or -1. So

putting di in above equation we get:

 xi+1 = ki (xi - di 2-i yi)

 yi+1 = ki (yi + di 2-i xi) (4)

As the value of di depends on the direction of rotation. If we

move clockwise then the value of di is +1 otherwise -1.Now

these iterations are basically combination of elementary

functions like addition , subtraction , shifting and table look

up operations and no multiplication and division functions

are required in the CORDIC operation.

In CORDIC algorithm, a number of microrotations are

combined in different ways to realize some different

functions. This is achieved by properly controlling the

direction of the successive microrotations. So on the basis of

controlling these microrotations we can divide CORDIC in

two parts and this control on successive microrotations can be

achieved in the following two ways:

Vectoring mode: - In this type of mode the y-component of the

input vector is forced to zero. So this type of consideration yields

computation of magnitude and phase of the input vector.

Rotation mode: - In the rotation mode θ-component is forced to

zero. and this mode yields computation of a plane rotation of the

input vector by a given input phase θ0 .

2.1 Vectoring mode

As earlier written the in vectoring mode of CORDIC

algorithm the magnitude and the phase of the input vector are

calculated. The y-component is forced to zero that means the

input vector(x0, y0) is rotated towards the x-axis. So the

CORDIC iteration in vectoring mode is controlled by the sign

of y-component as well as x-component. Means in the

vectoring mode the rotator rotates the input vector through

any angle to align the result in the x-axis direction.

So in the vectoring mode the CORDIC equations are:

 xi+1 = ki [xi + di pi 2-i yi]

 yi+1 = ki [yi - di pi 2-i xi]

 θi+1 = θi + di pi α i

where di = sign of x-component

and pi = sign of y-component.

The product of ki’s can be applied elsewhere in the system or

treated as a system processing gain. The product approaches

0.6073 as the number of iterations tends to infinity. Therefore

algorithm has a gain An of approximately 1.647. The exact gain

depeds upon the number of iterations and follows the

relation:

 A = ∏ Ki

 i

which provide the following results:

 Xn = A (√(x02 + y02))

 Yn = 0

 θn = θ0 + tan-1(y0/x0)

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

2.2 Rotation mode

In the rotation mode of CORDIC algorithm, with the help of

rotation angle say αi we calculate the rotation of the input

vector. As the eqation for this mode are :

 xi+1 = ki (xi - di 2-i yi)

 yi+1 = ki (yi + di 2-i xi)

 θi+1 = θi - di α i

Hence rotations are initialized when the value of θ-

component is forced to zero. And after that following rotation

based on coomponent di take place:

 di = sign(θ) = +1 , x < 0 (clockwise)

 -1 , x ≥ 0 (anticlockwise)

Usually, a pipeline of adder/subtracters with hardwired shifts

is used for high speed CORDIC realizations. the computation

time for this architecture is Tc =(N+1).f(N), where f(N)

describes the dependence of the propagation delay for

addition/ subtraction on the wordlength N.similar. and these

equations provide the follllowing result:

 Xn = A (x0 cos θ0 - y0 sinθ0)

 Yn = A (y0 cos θ0 + x0 sinθ0)

 θn = θ0 + tan-1(y0/x0)

 An = ∏ (√ (1+2-2i)

 i

The CORDIC rotation and vectoring algorithms are limited to

rotation angle in between ∏/2 to -∏/2. This limitation is due

to the use of 20 for the tangent in the first iteration. For

composite rotation angles larger than ∏/2, an additional

rotation is required. Volder describe the initial rotation of

±∏/2. And the new rotation is as written below:

 X’ = - d . x

 Y’ = d . y

 θ' = θ (if d=1 or z -∏ if d = -1)

The CORDIC rotator is basically used to evaluate several

trigonometric functions directly or indirectly, arctangent,

vector magnitude and transformation between rectangular

and polar coordinate.

2.3 CORDIC Arithmetic Unit

Fig.2 “[3]” give a simple idea about the CORDIC algorithm.

Only shifters, registers and adder / subtractor are used for the

calculations. Adder/ subtractor are used for the binary

addition and subtraction. Shift registers perform the single bit

shifting according to the algorithm. And LUTs (look up tables)

are used to set the value of the constants according to the

demand of angle setting for the algorithm.

Different hardware is used for computation of sine and cosine

using CORDIC. Here iterative rotations of a point around the

origin on the x-y plane are considered. In each rotation, the

coordinates of the rotated point and the remaining angle to be

rotated are calculated. Since each rotation is a rotation

extension the number of rotations for each angle should be a

constant independent of operands. So the gain factor K

becomes a constant. Hardware implementation for CORDIC

arithmetic requires three registers for x, y and z, two shifter to

supply the terms 2-i x and 2-i y to the adder/subs tractor units

and a look up table to store the values of αi=tan-12-i. The di

factor (-1 and 1) selects the shift operand or its complement.

The initial inputs to the architectures are X0=1, Y0=0. The

structure requires a pre-processing unit to converge the input

angles to the desired range and a post processing unit to fix

the sign of outputs depending on the initial angle quadrants.

The pre-processing unit takes in angles of any range and

converges it to the interval [-π/2, π/2]. It keeps record of the

quadrant of the input angle which may be used in the post-

processing unit to fix the sign of outputs. These two blocks are

inevitable for any application as the input range cannot be

predicted always

Fig.2 Basic Arithmetic Unit for CORDIC Algorithm

3 CORDIC ARCHITECTURES
Following are the three main architectures used for CORDIC

algorithm:-

3.1 Iterative Architecture

The CORDIC algorithm requires approximately one shift add/

sub operation for each bit of accuracy. A CORDIC core

implemented with sequential architectural configuration,

implements these shift-add/sub operations serially, using a

single shift-add/sub stage and feeding back the output. An

iterative CORDIC core with N bit width has a minimum

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

latency of N cycles. It takes at least N cycles to produce new

output. The implementation size is directly proportional to

the internal precision. This architecture finds major

application in pocket calculators, since even a delay of

thousands of clock cycles constitute a small fraction of a

second for a human user. To obtain sine and cosine values of a

given angle z0, iterative structure takes the value of (x0,y0) as

(1,0) in the first clock cycle. From the next clock cycle onwards

it takes the feedback values and the operation continues till

the required output is obtained. The control signal for the

input registers is provided by a state-machine designed for

the purpose. To get an N bit precise output, the structure

requires iterating at least N times. Hence, it requires a

minimum of N clock cycles for required output.

Fig.3 Iterative CORDIC

3.2 Higher Radix CORDIC

The generalized equation for a 4-Radix iterative CORDIC

algorithm “[7]” can be written as:

 xi+1 = xi - di 4-i yi

 yi+1 = yi + di pi 4-i xi

 θi+1 = θi - tan-1 di 4-i

where di Є (-2,-1,0,1,2) and tan-1di4-i is elementary angle

rotation which is to be performed for each rotation. 4-Radix

algorithm reduces the number of iteration to half as compare

to the conventional one but increases the hardware

complexity. Also there is some problem related to the

compensation of scaling factor which can be defined by:

Kn = ∏ Ki = (1/√(1+di2 4-2i))

 i=0

3.3 Parallel or Cascaded Architecture

This architecture uses multiple instances of Iterative CORDIC

structure. A CORDIC core with parallel architectural

configuration implements the shift-add/sub operations in

parallel using an array of shift-add/sub stages. A parallel

CORDIC core with N bit output has latency of one clock cycle.

The implementation size of a parallel CORDIC core is directly

proportional to the internal precision times the number of

iterations. Instantiation of blocks must be done N times for an

N bit precise output. Unlike in iterative CORDIC, all iterations

are done parallelly and hence need not wait for N clock cycles.

But, the latency of each block has an inevitable role in fixing

the clock frequency. The frequency of operation for Parallel

CORDIC core will be lesser than the frequency of operation of

iterative CORDIC. But this is the case with a single iteration.

While dealing with a chain of inputs, the parallel structure

proves to be more efficient one since the throughput of

parallel structure is much greater than that of iterative. The

shifters used in this structure are constant shifters, which can

be implemented in the wiring, so that the hardware can be

reduced. So we can llist the following main disadvantages of

parallel architecture:

1.) The amount of hardware required is large and the area

required is maximum.

2.)Power consumption is highest among the three CORDIC

architectures.

Fig.4 Cascaded Architecture

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

3.4 Pipelined Architecture

Pipelined architecture uses a structure similar to that of a

Parallel CORDIC. It uses pipeline registers in between each

iteration phase as shown in Fig.5 ”[4]” Pipelined CORDIC

proves to be advantageous with continuous input values. For

an N bit data CORDIC core, N stage pipeline can give

maximum result. The first output of an N-stage pipelined

CORDIC core is obtained after N clock cycles. Thereafter,

outputs will be generated during every clock cycle. The

advantage of pipelined CORDIC core over parallel and

iterative CORDIC cores is its frequency of operation which is

much higher when compared to the latter two structures.

Pipeline realizes same throughput as that of parallel core with

improved frequency of operation. This feature of pipelined

structure makes it the best possible option for high frequency

satellite communication and other communication systems. A

drawback of pipelined structure is the increase in area

introduced by the registers. Hence, there is a trade-off

between parallel and pipelined cores based on frequency and

area. Following are the main advantages of using pipelined

architecture:-

1.) FPGA implementation is easy, as registers are already

available, thus requiring no extra hardware.

2.) Number of iterations after which the system gives accurate

result can be modelled, considering clock frequency of the

system.

3.) When operating at greater clock period power

consumption in later stages reduces due to lesser switching

activity in each clock period.

Fig.5 Pipelined Architecture

4 FPGA IMPLEMENTATION AND SIMULATION
RESULTS

The hardware architecture has been synthesized using Xilinx

ISE 8.2i and mapped onto Xilinx XC2s200E-pq 208-5 device.

This is a low end FPGA with a small number of logic gates.

FPGA implementation details are given in the table 1
Table1

Device Utilization Summary

Total

Gate

count

for

design

No. Of LUTs No. Of Slices Frequency

(MHz)

3933 389 207 62.35

The simulations results and dataflow model are confirmed to

ModelSim are given below.

Fig.6. Simulation results

Fig.7 Dataflow Model

5 CONCLUSIONS

The FPGA implementation confirms to CORDIC operation

with optimized scheme of slice -delay product for area

efficient design.

6 REFERENCES

International Journal of Scientific & Engineering Research, Volume 3, Issue 1, January-2012 6
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[1] Jack E. Volder, “The CORDIC trigonometric computing technique,”

IRE Trans. Electron Computers, vol. EC-8, pp. 330–334, Sept. 1959.

[2] Jack E. Volder,” The Birth of CORDIC “, Journal of VLSI Signal

Processing 25, 101–105, 2000.

[3] Ramesh Bhakthavatchalu1, Parvathi Nair, Jismi.K, Sinith.M.S, “A

Comparison of Pipelined Parallel and Iterative CORDIC Design on

FPGA” 2010 5th International Conference on Industrial and

Information Systems, ICIIS 2010, Jul 29 - Aug 01, 2010, India

[4] OSKAR MENCER, LUC S ´EM´ERIA AND MARTIN MORF,

“Application of Reconfigurable CORDIC Architectures”, Journal of

VLSI Signal Processing Systems 24, 211–221, 2000.

[5] Pramod K. Meher, Javier Valls, Tso-Bing Juang, K. Sridharan and

Koushik Maharatna, “50 Years of CORDIC: Algorithms, Architectures

and Applications” IEEE transactions on circuits and systems—I:

regular papers, vol. 56, no. 9, september 2009.

[6] J. Villalba, T. Lang, and E. Zapata, “Parallel compensation of scale

factor for the CORDIC algorithm,” J. VLSI Signal Process., vol. 19, no.

3, pp. 227–241, Aug. 1998.

[7] E. Antelo, J. Villalba, J. D. Bruguera, and E. L. Zapatai, “High

performance rotation architectures based on the radix-4 CORDIC

algorithm,” IEEE Trans. Computers, vol. 46, no. 8, pp. 855–870, Aug.

1997.

