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Abstract:An explosive acceptance of Ellipt ic Curve Cryptography (ECC) has been attained in the industry and academics. Ellipt ic Curve 

cryptography is an approach to public-key cryptography based on the algebraic structure of elliptic curves over f inite f ields. The ECC is 

advantageous due to the provision of high level of security and the usage of small keys. In the f ield of Mobile, Wireless and Network 

servers, to sustain the high throughput the implementations of high speed crypto-systems are needed. ECC has been extensively used for 

hardware implementation of FPGA and DedicatedASIC. This paper attempts to conduct a detailed survey on different techniques for 

implementing FPGA using ECC to achieve high speed and f lexibility. 
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1. INTRODUCTION 

Today Internet is inseparable part of our life and millions 
of people are using the Internet. Similarly, today there is 
proliferation of wireless networks based on technologies 
such as Wi-Fi, Blue tooth, Wi-Max etc. unfortunately, the 
data going across the internet or via wireless media is not 
secure since their openness makes it relatively easy for 
intended attackers to spy on legitimate users and steal or 
modify the information. Hence, it is very essential to 
protect the information from eavesdroppers and hackers 
using Cryptographic techniques.  
This paper is organized as follows: Section 2 gives a general 
introduction to cryptography. Section 3 explains the Elliptic 
curve system. Section 4 deals with the existing 
multiplication algorithms used in ECC. Section 5 presents a 
Choice of Coordinates; Section 6 reviews the related works 
on FPGA. Section 7 discusses the performancesummary 
and the conclusions arrived at, in Section 8. 

2. CRYPTOGRAPHY 

Cryptography is the science of using mathematics to 
encrypt and decrypt data. Which aims to provide some or 
all of the services known as Confidentiality, Integrity, and 
Availability: an additional Objective is Non-Repudiation[1]. 

2.1 Classification of Algorithms in terms of Key 

There are several ways of classifying cryptographic 
algorithms. They will be categorized based on the number 
of keys that are employed for encryption and decryption, 
and further defined by their application and use. The two 
types of algorithms that will be discussed are: 

Symmetric Key Cryptography (SKC): Uses a single key for 
both encryption and decryption  
Public Key Cryptography (PKC): Uses one key for 
encryption and another for decryption  
 
           Typically, several secret-key or symmetric Key 
algorithms pertaining to the class of block ciphers are used 
to encrypt one block of data at a time.  Block ciphers ( like 
Twofish, Serpent, AES (Rijndael), Blowfish, CAST5, IDEA. 
DES, and TripleDES) transform an input block of n bits into 
an output block of  n encrypted bits. Today, key lengths of 
about 128 bits and block lengths of 128 bits typically 
provide good security. 
On the other hand, some functions such as Authentication 
using digital signatures need Public-key encryption 
systems which use a private key that must be kept secret 
from unauthorized users and a public key that can be made 
public to anyone. The public key and the private key are 
mathematically linked; data encrypted with the public key 
can be decrypted only with the private key, and data 
signed with the private key can be verified only with the 
public key. The public key can be made available to 
anyone; it is used for encrypting data to be sent to the 
holder of the private key. Both keys are unique to the 
communication session. Public-key cryptographic 
algorithms are also known as asymmetric algorithms 
because one key is required to encrypt data while another is 
required to decrypt data. 
Some examples of popular asymmetric algorithms include 
RSA (Rivest-Shamir-Adleman) and elliptic curve based 
(ECC) cryptosystems. As far as the speed is concerned, 
asymmetric key algorithms are typically hundreds to 
thousands times slower than symmetric key algorithms due 
to the extremely large word lengths and complex 

http://en.wikipedia.org/wiki/Twofish
http://en.wikipedia.org/wiki/Serpent_(cipher)
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Rijndael
http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://en.wikipedia.org/wiki/CAST5
http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
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operations like Modular exponentiation (ax mod n) etc. 
 
2.2 Advantages of ECC 

The primary advantage is that ECC is based on either 
integer factorization or the discrete log problem in the 
multiplicative group of a finite field in the absence of a sub 
exponential-time algorithm. ECC uses smaller key size as 
compared to RSA. As a result it achieves greater speed and 
less storage. 
 
There are various standard bodies guiding the 
implementation of security protocols for the industry. Some 
of the organizations involved in standard activities are the 
Internet Engineering Task Force (IETF), American Bankers 
Association, International Telecommunications Union, 
IEEE P1363[2], and National Institute of Standards and 
Technology (NIST)[3], ANSI X9.62[4], ISO 11770-3 and 
ANSI X9.63. 
 
The US National Institute for Standards and Technology 
has recommended up to 2010 that these 1024-bit systems 
are sufficient [5] as shown in Table 1. After wards, NIST 
recommends key size should be upgraded for providing 
more security. ECC is becoming the mainstream 
cryptographic scheme in all mobile and wireless devices. 
ECC can be broadly divided in to four categories: the 
Internet, smart cards, PDAs and PCs [6 ]. 

 

TABLE 1 

NIST RECOMMENDED KEY SIZES[5] 

SymmetricKey 

Size (bits) 

RSA andDiffie-

HellmanKey Size 

(bits) 

Elliptic 

CurveKey Size 

(bits) 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 521 

 
 
 
 
 

 

This paper focuses on Asymmetric algorithm using ECC. In 
1985 Koblitz and V. Miller independently proposed using 
the group of points on an elliptic curve defined over a finite 
field in discrete log cryptosystems. 
This survey presents the current research in the high speed 
hardware implementation of ECC.  Note that the problem 
of side channel attacks and also Hyper Elliptic Curve 
Cryptography are not within the scope of this study. The 
aim of this survey is to highlight the work carried out in 
implementing ECC on FPGA for desired level of efficiency 
and flexibility. 

 
3. ELLIPTIC CURVE SYSTEM [1] [7] [8] [9] [10]  

[11] 
 
An elliptic curve is defined by an algebraic equation in two 
variables. For cryptography, the variables and the 
coefficients of the equation are restricted to elements in a 
finite field. This results in the definition of a finite Abelian 
group [12].This section presents, quick review about the 
background of elliptic curve system. For a thorough 
description of the topic, the reader is referred to the 
literature [12]. 
 
3.1 Elliptic Curves over real numbers 

 

Elliptic curves are not ellipses. They are so named because 
they are described by cubic equations; 
In general, cubic equations for elliptic curves take the form 
y2+axy+by =x3+cx2+dx+e, 
Where a, b, c, d and e are real numbers and x and y take on 
values in the real numbers. 
It is sufficient to limit ourselves to equations of the form 
y2 =x3 +ax+b ----- (1) 
Such equations are said to be cubic, or of degree 3, because 
the highest exponent they 
contain is a 3.Also included in the definition of an elliptic 
curve is a single elementdenotedo and called the point at 
infinity or the zero point, To plot such a curve, we needto 
computeY =             
For given values of a and b, the plot consists of positive and 
negative values of y for 
each value of x. Thus each curve is symmetric about y =0. 
Figure 1 shows the two examples of elliptic curves [1]. 
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Figure1. Examples of Elliptic Curves [1]. 

 

Group can be defined based on the set E(a,b) for specific 
values of a and b in equation (1), provided the following 
condition is met: 
4a3 + 27b2 ≠ 0 …………………….(2) 
Rules of addition over an elliptic curve are as follows: 
(a) P + 0 =0 + P = P for all P E. 
(b) P + (-P) = 0 for all P  E. 
(c) P + (Q + R) = (P + Q) + R for all P; Q; R  E. 
(d) P + Q = Q + P for all P; Q  E. 
With the preceding list of rules, it can be shown that the set 
E(a, b) is an abelian group. 
 
For two distinct points P = (x1, y1) and Q = (x2, y2) that are 

not negatives of each other, 
the slope of the line l that joins them is 
∆ = (y2- y1)/( x2– x1). 

 

After some algebraic manipulation, we can express the sum 
R = P + Q as follows: 
xR = ∆2 –x1 – x2 
yR = - y1 + ∆( x1- xR) ………………..(3) 
 
We also need to be able to add a point to itself: 
 P + P= 2P = R, when y1 = 0, 
The expressions are 
xR =( (3x2

1 + a)/(2y1))2 – 2x1 
yR =((3x2

1 + a)/(2y1)) (x1-xR) –y1 …………(4) 
 

3.2 Elliptic Curves over Zp 

 
Two families of elliptic curves are used in cryptographic 
applications: prime curves over Zp and binary curves over 
GF(2m) 
 
For a Elliptic Curve over Zp; we use a cubic equation in 
which the variables and coefficients all take on values in the 
set of integers from 0 through P -1 and in which 
calculations are performed modulo P.For elliptic curves 
over Zp, as with real numbers, coefficients and variables 
limited to Zp: 
 
y2 mod P = (x3 + ax + b) mod P ..............(5) 
 
Group can be defined based on the set Ep( a, b) provided 
that (x3 + ax + b) mod P has no repeated factors. This 
equivalent to the condition 
 
(4a3 +27b2) modP≠ 0 mod  P……………(6) 
 
The rules for addition over Ep (a, b) correspond to the 
algebraic technique described for 
elliptic curves defined over real number. For all points P, Q 
Є Ep (a, b): 
1. P + 0= P 
2. If P =(x1, y1), then P + (x1, -y1) = 0. The point (x1, -y1) is the 
negative of P,denoted as –P. 
3. If P =(x1, y1) and Q = (x2, y2) with P≠ -Q,  
then R = P + Q = (xR, yR) isdetermined by the following 
rules: 
xR = (λ2 – x1 – x2) mod P 
yR = (λ(x1 –xR) – y1) mod P 
Where 

            (y2 – y1)/(x2– x1) mod P if P≠ Q 
λ= 
 
            ((3x2

1 + a)/(2y1)) mod P if P= Q 
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3. Multiplication is defined as repeated addition; for 

example, 4P = P + P + P + P. 
 

 

 

 

3.3 Binary Curve over GF(2m) 

 
For a binary curve defined over GF(2m), the variables and 
coefficients all take on values 
in GF( 2n) and in calculations are performed over GF(2n). 
 
A finite field GF(2m) consists of 2m elements, together with 
addition and multiplicationoperations that can be defined 
over polynomials. It turns out that the form of 
cubicequation appropriate for cryptographic applications 
for elliptic curves is somewhatdifferent for GF(2m) than for 
Zp. The form is 
 
y2 + xy = x3 + ax2 + b ……(7) 
 
The variables x and y and the coefficients a and b are 
elements of GF(2m) and thatcalculations are performed in 
GF(2m). 
1. P + 0= P 
2. If P = (x1, y1), then P + (x1, x1 + y1) = 0. The point (x1, x1 + 
y1) is the negative ofP, denoted as –P. 
3. If P = (x1, y1) and Q=(x2,y2) with P≠ - Q and P≠ Q, then R 
= P + Q = (xR, yR) isdetermined by the following rules: 
xR = λ2+ λ+ x1+ x2 + a 
yR= λ( x1+ xR )+ xR+y1 
Where 
λ = (( y2+ y1 )/ ( x2+ x1 )) 
4. If P = ( x1, y1) then R = 2P = ( xR, yR) is determined by the 
following rules: 
xR= λ2+ λ+ a 
yR = x2

1 +(λ + 1 )xR 
where 
λ = x1 + (y1/x1) 
 

4. EXISTING MULTIPLICATION ALGORITHMS IN ECC  

[13] 

 
4.1 Binary Scalar Multiplication Algorithms 

 

Algorithm 1: Left-to-right binary algorithm 

Input: P E(  ), k=                   

Output: Q= [k]P 

1.           

2.  for i=n-2 downto 0 do 

3.        

4.  if      then          

5.  end for 

6.  return    

 

 

 

Algorithm 2: Right to left binary algorithm 

Input: P E(  ), k=                   

Output: Q= [k]P 

1.           

2.                    

3.                       

4.        

5.          

6.  return 

The purpose is to select a simple but efficient multiplication 
algorithm. Hence we choose the best available one which is 
binary scalar multiplication which in the context of ECC is 
known as square and multiply algorithm or double-and-
add algorithm. The binary algorithm processes a loop 
scanning the bits of the scalar and performing a point 
doubling, followed by a point addition whenever the 
current scalar bit equals 1.Two methods can be used in this 
case: left to right or the right to left direction 
 
On an average both the algorithms involve n point 
doublings and n/2 additions. Using a signed representation 
for the exponent the number of point additions can be 
reduced by choosing a random number 

      
                    

 
 

 

The Non-Adjacent Form (NAF) which is a signed 
representation of the scalar  has only n/3 signed bits. Hence 
the number of point additions falls to a much lower value 
of n/3. 
This algorithm is fast and consumes low memory. If more 
memory is available we can use window technique. In the 
case of the above mentioned algorithm each loop focuses on 
a single bit whereas window technique focuses on a 
window of w bits. Every loop iteration in other words 
treats a scalar in the radix 2w. This variation of the Binary 
algorithm involving more memory is called Regular Signed 
Window Algorithm. 
 
4.2The Montgomery Ladder Scalar Multiplication 

Algorithm: 

 

Algorithm 3: 
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Input: P E(  ), k=                   

Output: Q= [k]P 

1.           

2.                       

3.                   

4.        

5.         

6.           

In Montgomery Algorithm the condition R1-R0=P is 
satisfied at the end of every iteration where R0 & R1 are the 
loop invariants [57]. This algorithm was initially proposed 
for a specific type of curves called Montgomery curves. 
Later however it was adapted to other elliptic curves. Since 
only X and Z coordinates are computed, the resources that 
would otherwise be lost on Y coordinates is saved thereby 
improving efficiency. It involves the computation of the 
sum of the coordinates whose difference is known, also 
known as the Differential addition. 
 
Another feature that could be added to the benefit of 
Montgomery Algorithm is the use of (X,Y)-only co-Z 
arithmetic technique. The loop iterations of the 
Montgomery Algorithm can be rewritten to perform 
conjugate addition followed by regular addition as shown: 
 

 
            

      
  

                             
           

   

 

 
4.3 The Joye Double and Add Algorithm 

 

Algorithm 4 : 

 

Input:PE(  ), k=                   

Output: Q= [k]P 

1.           

2.                   

3.      

4.               

5.         

6.           

 

In Joye Algorithm the ith loop iteration yields R0+R1=[2 i]P. 
It hence produces a efficient regular scalar multiplication 
based on co-Z addition formulae along the lines of 
Montgomery ladder technique. The efficiency is akin to that 
of Montgomery technique. 

 

 
4.4 Classical Multiplication Algorithm[14] 

 
This algorithm is nothing but a direct translation of the 
regular multiplication technique. Consider the problem of 
multiplication of any two Polynomials of degree n: 

 
                 

  

 

                 
  

We need to find all the coefficients of the polynomial 
C(x)=A(x)B(x) 
For example : 

              
                                               

                            
 
Let us consider two general polynomials A(x) and B(x) of 
degree n and m respectively. Then the resultant polynomial 

C(x) is of degree m+n and the vector (C0,C1,…,Cm+n) is a 

convolution of vectors (a0,a1,..,an) and (b0,b1,…,bm). 
 
 

Let         
 
      and          

  
    

 

Set          
    

              
 
Then           

 
                    

 
Calculating these convolutions is a major problem in digital 
signal processing.Thus the cost calculation becomes vital. 
The cost of the Classic Multiplication Algorithm works out 

to be Ɵ(n2).Also this type of multiplication requires n2 

multiplications and (n-1)2 additions.A more subtle way of 
achieving this is carrying out the divide and conquer 
multiplication based on Karatsuba’s multiplication 
algorithm. 

 
4.5   Karatsuba Multiplication Algorithm[14]  

 
The Karatsuba algorithm is a fast multiplication algorithm 
published in 1962. It reduces the multiplication of two n-

digit numbers to at most 3nlog
2
3 3n1.585 single-digit 

multiplications in general (and exactly nlog
2
3 when n is a 

power of 2). It is therefore faster than the classical 

algorithm, which requires n2 single-digit products.The 
application of Karatsuba’s Algorithm on multiplication of 
Polynomials is illustrated below: 
 

The Divide Step: Define 
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Similarly we define       and       such that 

                 
 
 

 
 
 

 
 
 
 
Then  

                     
 

           
 
 

 
 
  

 

           
 
 

 
 
  

 

           
  
 

 
 
  

 

The Conquer Step: Solve the four sub problems, i.e., 
computing 
                     ,                       
By recursively calling the algorithm 4 times. 
 

The Combining Step: Adding the following four 

polynomials 

            

           
 
 

 
 
  

           
 
 

 
 
  

           
  
 

 
 
  

This reduces the number of operations to  (n) 

Iterative Karatsuba’s Multiplication Algorithm (IKM) 
operates similar to Karatsuba’s Multiplication Algorithm in 
the sense that it splits the operands into parts but different 
in the aspect that the partial multiplications proceed 
iteratively instead of a single monolithic multiplication and 

the results are accumulated to the final result. 

Today’s research concentrates on improving these primary 

algorithms for better performance. 

5. CHOICE OF COORDINATES [  15, 16, 17, 18 ] 
 

The coordinate systems are chosen to avoid costly final 

inversions. The following coordinate systems are available: 

5.1Affine Coordinate System 

The Affine coordinate system is the conventional Cartesian 
coordinate system. Hence the equation of Elliptic curve in 

Affine Coordinate system is given by: 

y2 + xy = ax2 + b (b≠0) 

Point doubling and addition operations used in ECC 

require inversion operation and multiplication requires 

more inversions than adding and squaring. Division is 

implemented using inversion. 

Given two points P(x1,y1) and Q(x2,y2),a third point 

R(x3,y3) given by addition of P and Q, that is R=P+Q, then 

the coordinates of R are given by: 

 

    
     
     

  
     
     

   
     
     

          

           

    
     
     

               

       

Requiring computation of two inversions, it becomes too 
costly in terms of hardware implementation. Hence we 
present the use of Projective coordinates. 

 
5.2 Projective Coordinates 

 
The Projective Coordinate system is a three coordinate 

system with X,Y Z coordinates used to represent a point. 

The equation of an elliptic curve in Projective Coordinates 

is given by : 

Y2 + XYZ = X3Z + aX2Z2 + bZ4 

Since selection of the proposed Projective Coordinates 

avoids the cost due to inversion, this coordinate system is 

highly favored. 

The three currently popular projective coordinates are: 

 1. Homogenous Projective Coordinates 

 2. Jacobian Projective Coordinates 
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      (X, Y, Z) (X/Z2, X/Z3) in Affine 

3. Lopez-Dahab Projective Coordinates 

     (X, Y, Z) (X/Z, X/Z2) in Affine 

Among the three the computation cost of L-D system is 

lowest and hence most efficient system for Hardware 

implementation.A comparison between the above 

mentioned Coordinate systems in terms of cost is shown in 

table2: 

 
Table 2 

Coordinate System Addition Doubling 
Affine GF(p) 6A+3M+I 4A+4M+I 
Homogenous 
Projective GF(p) 

6A+15M 4A+12M 

Jacobian Projective 
GF(p) 

6A+16M 4A+10M 

Lopez-Dahab 
GF(2m) 

8M+4S 4M+5S 

 
Final Inversion is however necessary to convert to 

Affine Coordinate system from the Projective coordinates at 
the end of the computation. 

 

6.  RELATED WORK ON FPGA: 

 
So far several papers on high-speed architecture 

for implementation of ECC operations have been 
published. In this section we review these implementations 
on FPGA.  
 

Owing to the their re-configurability due to which 
accelerator can easily be changed to keep up with ever 
changing security requirements, FPGA’s are advantageous 
for implementing cryptographic hardware accelerators 
.Implementations on FPGA have thus been selected for this. 
We present the corresponding implementations on Xilinx 
Virtex FPGA in Table3.Related references can be found in 
[61,62] 
 

A novel memory architecture was proposed 
[19],which was advantageous for distributed memory 
architecture, well-suited for different point addition and 
doubling algorithms over GF(p) implemented on FPGAs 
[19]. Point addition and point doubling operations in ECC 
are performed in Affine coordinates, implemented on 
FPGA .This work is secure against time and power analysis 
attacks[22].The results of paper [22] have been summarized 
in Table 3. 
  

The proposed crypto-processor uses a Parallelized 
Modular Arithmetic Logic Unit(P-MALU)  that exploits two 
types of different parallelism to accelerate modular 
operations. Multiple P-MALU instructions are processed in 
parallel and using Instruction-Level Parallelism(ILP) scalar 
multiplications areaccelerated. [20]. A GF(p)  160-bit ALU 
for encryption processors was proposed.[50].The results of 
which[50] is summarized in Table3. A unified  arithmetic 
unit was proposed for dual field modular operations and 
an adder based on signed-digit number representation that 
provides for both carry-propagated and carry- 
 
 
less operations was proposed [27] [53].The paper [27] [53] 
also gives FPGA results in table 3. 
 
 
FPGA implementations of the EC point multiplication over 

GF(2283) was proposed that can speed up by 31.6 times in 
comparison to previous approaches[28]. Flexible elliptic 
curve cryptography processors and their implementation 
on  FPGA are described in [58] . The relevant results are 
shown in table 3. This paper [55] presents FPGA  
architecture which contribute to acceleration of ECC 
operations. The aim is primarily to reduce the latency of 
point multiplication operations in terms of number of 
required cycles. A processor architecture for Elliptic Curve 
Cryptography Computations over GF(p) was proposed 
using parallelism and selecting appropriate coordinate 
system the speed of computations was significantly 
enhanced. It was implemented on FPGA.[17]. A new 
architecture  for cryptoprocessor is proposed which can 
compute  point multiplication with arbitrary point over 
Elliptic curves over GF(p).[49].The results of which [49] 
have been tabulated in table 3.This paper[59] proposes a 
novel FPGA coprocessor for ECC that makes use of a 
partial reconfigurable methodology to deal with 
interoperability problems. This paper gives the result in 
table 3. 

 
Different reconfigurable modular multiplication 

methods and modular reduction methods for software 
implementation on Intel IA-32 processor were compared 
and the point arithmetic was optimized by reduction 
sharing technique. [21] 
 

The novel reduction algorithm presented in this 
paper supports seldom used curves and arbitrary curves 
unknown at the time of implementation and for several 
field degrees it permits software and hardware 
implementations [25]. Improved multiplier design is 
proposed over both named and generic curves which 
implements 256 bit modular field operations and results are 
discussed for 163-bit[37] as shown in table 3. 
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An improved Montgomery multiplier based upon 
four-to two CSA was proposed to reduce path delay. A 
modified CSA based on single level carry-save logic is used 
here. The need for extra clock cycles for operands whose 
length was not a power of 2 was eliminated using 
reconfiguration of the design [26]. 
 

A novel partitioning and pipeline folding scheme 
to fit at least 512-bit modular multiplications on a single 
FPGA is achieved [40]. A customizable pipelined and 
parallelized ECC design for various field operations has 
been proposed [39.] The EC cryptographic processor 
proposed in this work has finite-field (FF) RISC cores and a 
main controller to achieve instruction level parallelism(ILP) 
for EC point multiplication [29].This paper[30] focuses on 
two different architectures based on parallelism to speed 
up the EC point multiplications in Affine coordinates. It 
also discusses the results in table 3 [30].  A high 
performance architecture for scalar multiplication over EC 

GF(2m)has been proposed. A pseudo-pipelined word serial 
finite field multiplier with word size w, suitable for the 
scalar multiplication is also developed [45]This paper[45] 
discusses the result in table 3. 

 
A new coordinate system and arithmetic 

implementations of ECC over GF(2n) was proposed 
[18].This coordinate system resulted in improved efficiency 
and performance in terms of speed. 
A micro-coded EC processor with low memory and 
computation  requirements with a high degree of security is 
proposed [33].A high performance ECC processor based on 
Lopez-Dahab EC point multiplication was 
proposed.[31],[35].The paper[31] also gives FPGA results in 
table 3. 
 

A hardware architecture for implementing scalar 
multiplication using polynomial basis was 
proposed.[47].The result is included in table 3 at reference 
[46,47] .A parallel architecture for scalar multiplication 
based on Karatsuba’s multiplication algorithm over 

Hessian Curves in GF(2m) has been proposed[44].The 
results of this work[44]  have been discussed. Point 
multiplication is the most crucial among the ECC 
operations. This architecture[56] uses the polynomial 
multiplication as the basis to compute the product over 

GF(p) or GF(2m). 
 

 
A novel high speed and low area, array and 

polynomial based architecture for field operations such as 

multiplication and squaring over GF(2m) has been 
proposed.[22]. Hardware implementation of an arithmetic 
processor involving Montgomery modular multiplication 

in a systolic array architecture is described [24].The 
corresponding result is included in table 3. The two new 
hardware architectures for Montgomery modular 
multiplication for radix-2 is proposed and compared with 
the previous architectures.[23].The implementation of 
Montgomery Multipliers using higher radix.(radix-2,4,8,64) 
is achieved[32].and the concurrent algorithm is discussed to 
speed up point multiplication[38]Higher radix EC 
cryptographic architecture is achieved by applying sliding 
window scalar multiplication algorithm as used[41], 1’s 
complement fast scalar multiplication[42]is used, a 
pipelined application specific instruction set 
processor(ASIP) is used[43],  to achieve higher speed. The 
paper [43] gives the result in table 3. 

 

A dual-mode Arithmetic Unit(AU) capable of 

performing field operations of both ECC and RSA schemes 

based on Montgomery Multiplication is proposed[46] An 

EC processor with a new multiplier architecture for high-

radix multiplication has been proposed[48]. The results of 

which[48] have been presented in Table 3. This paper[54] 

proposes architecture based on Montgomery parallel 

multiplier. It is defined over GF(p). A dual field EC 

processor with projective coordinates adaptive to both 

binary and prime fields, implementing the scalar 

multiplication architecture was proposed. Better time, area 

performance and lower power consumption was observed 

[34][36].In this paper a new arithmetic unit is proposed that 

uses Polynomial modular multiplication of ECC over 

binary field. The result of this paper [60] has been 

presented in table 3. 

A simple generator is proposed in[51] and the 

improved version is presented in [52].These two 

papers[51][52]mention the result in table 3. 

 
7. PERFORMANCE SUMMARY 

 
In an effort to showcase the works conducted so 

far in the relevant field , we have chosen only the most 

appropriate results in our opinion. These results 

aresummarized in the table 3. XCV devices are Xilinx Virtex 

FPGAs. LUTs are Look Up Tables, CLBs are Configurable 

Logic Blocks, LSD/MSD is Least/Most Significant Digit, D 

is Digit size of a serial/parallel multiplier, bRAMs is 

nothing but Block RAMs, DBLand ADD is Double and 

ADD, ASIP is Application Specific Instruction set 

Processor, CSA is Carry Save Adder and GNB is Gaussian 

Normal Basis. 
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Table3: Performance summary of state of the art 

Name,ref./GF(p),GF(2m) Year of 

Publication 
Device/size Frequency 

(MHz)/Time 

Remarks 

Orlando et al.[48] 

GF(P),192-bits 

2001 XCV1000E 

11416 LUTs 

40 

3ms 

High-radix 

Montgomery 

multiplier 

N.Gura et.al[55] 

GF(2m),163-bits 

2002 XCV2000E-7 

19,508 LUTs 

66.5 

143 µs 

LSD Multiplier,D=64 

C.Grabbe et.al[52] 

GF(2m),233-bits 

2003 XC2V6000 

19440 LUTs 

100 

130 µs 

Hybrid KOA 

Generator 

H.Eberle et.al[37] 

GF(2m),<256-bits 

2003 XCV2000E-7 

20068 LUTs 

66.4 

144 µs 

MSD D=64 

 

SıddıkaBernaOrs et.al[24] 

 

GF(p),160-bits 

2003 XCV1000E 

11,227 LUT’s 

91.308 

10.952ns 

Montgomery 

Modular 

Multiplication 

SystoArray,Affine 

coordinates. 

N.A.Saqib et.al[44] 

GF(2m),191-bit, trino 

2004 XCV3200E 

18314 Slices 

9.99 

56µs 

Parallel Karatsuba 

24 bRAMs, No final 

inv. 

K.Jarvinen et.al[51] 

GF(2m),163-bits 

2004 XC2V8000-5 

18079 Slices 

90.2 

106 µs 

Generator 

Miguel Morales et.al[47] 

GF(2m),191-bits 

2004 Xilinx XC2V1000 113, 

4.7ms 

Scalar Multiplication, 

supports Binary 

polynomial fields 
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Alan Daly et.al[50] 

GF(p),160-bits 

2004 XC2V2000-6 

1854 Slices 

40.28 Montgomery 

modular 

multiplication and its 

inverse. 

A.Cilardo et.al[53] 

GF(2m),160-bits 

2005 Virtex-E XCV2000E 

6709CLB’s 

77.34 

1.18ms 

Carry-propagation 

and carry-less modes  

C.Shu et.al[56] 

GF(2m),163-bits 

2005 XCV2000E-7 

25,763 LUT’s 

68.9 

48 µs 

6 MSD Multipliers, 

D=32.8 

Francis Crowe et.al[46] 

GF(p),256-bits 

2005 XC2V2000-6 

5,267 slices 

44.91 

5.75 µs 

Carry propagate 

adders 

Dual mode 

WuShuhua et.al[49] 

GF(p),192-bits 

2005 XC2V1000-5 

4,729 LUT’s 

50 

6ms 

Montgomery 

modular 

multiplication 

C.J.Mclvor et.al[54] 

GF(p),256-bits 

2006 XC2VP125 

15,755 Slices 

45.68 

3.86ms 

256(18X18)Multipliers 

Bijan Ansari et.al[45] 

GF(2m),163-bits 

2006 XC2V2000 

8300 LUT’s 

100 

41 µs 

MSB pipelined D=41 

No final Inversion 

M.Benaissa et.al[58] 

GF(2m),160-bits 

2006 XC2V2000E-7 

Unknown 

150 

0.66ms 

D X D Multiplier, D = 

64 

Yi Wang et.al[27] 

GF(2m),163-bits 

2008 Virtex-E XCV2000E 

8103 CLB’s 

100.4 

0.520ms 

Montgomery’s 

Modular 

Multiplication  

Algorithm  

Yi Wang et.al[27] 

GF(2m),163-bits 

2008 Virtex-IV 

XC4VFX100 

5227 CLB’s 

150.5 

0.347ms 

Montgomery’s 

Modular 

Multiplication  

Algorithm  

Chang et.al.[31] 

GF(2m),163-bits 

2008 XC4VLX80 

24,363 Slices 

143 

10 µs 

3 GNB Multipliers, 

D=55 

Santosh et.al[22] 

GF(p),256-bits 

2008 XC4VLX200-12 

11661 Slices 

51 

8.72ms 

Modular operations 

performed in Binary 

number system 
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William et.al[43] 

GF(2m),163-bits 

2008 XC4VLX200 

16209 Slices 

153.9 

19.55 µs 

Combined DBL and 

ADD 

Based on ASIP 

Santosh et.al[30] 

GF(p),256-bits 

2009 XC4VLX200-12 

20123 Slices 

43.32 

7.7ms 

5 Modular 

multiplications and 1 

Division 

 

Lo’ai Ali et.al[17] 

GF(p),192-bits 

2010 XC5VLX30 

Unknown 

206 

3.84 µs 

Montgomery 

Multiplication using 

Redundant CSA 

 

M. Morales-Sandoval  et.al 

[59] 

GF(2m),163-bits 

2011 XCV2000E 

3324 Slices 

100 

2.09 ms 

Scalar Multiplication 

Yi Wang et.al[60] 

GF(2m),163-bits 

2011 XC5VLX60 

2309 Slices 

 

146.39 

0.00054 s 

Polynomial 

multiplication 

 
8. CONCLUSION 

Selecting a hardware architecture design for the 

ECC system presents a trade-off between flexibility and 

speed. Hardware accelerators used for high performances 

sacrifice flexibility. In any architecture , multiplication, 

terminal inversion to affine coordinates becomes primarily 

important and they tend to govern the speed and efficiency 

of the proposed architecture. The architecture must also be 

able to support various cryptosystems. Selection of an 

efficient coordinate system(Jacobian ,Affine, Lopez-Dahab 

etc) and a fast scalar multiplication algorithm 

(Montgomery, Karatsuba, Binary Scalar  etc )are also 

significant. In our opinion the Lopez-Dahab coordinates 

was found to be a good choice of coordinates. Therefore to 

develop an efficient architecture a wise combination of both 

has to be made. Usage of parallelism in multiplication 

results in significant speedup. Parallelism may be enhanced 

using pre-computed partial results. Using a higher radix 

Montgomery multiplication with Carry Save Adders also 

provides a high performance. Partial reduction technique 

could be implemented. 

The architecture must also ensure that integration of 

large multipliers should result in a noticeable speedup . 

Finally a suitable algorithm for inversion of coordinates to 

Affine must also be decided upon. 

Adding a note on future work, study is being 
conducted on developing a cryptographic processor that 
can use a common architecture for point multiplication for 
both GF(p) and GF(2m). Currently 

 

 

work is in progress to achieve functional extensions and 
optimizations such as speed improvement, resource 
minimization, and run-time customization of ECC 
designs.Further improvements could include enhancement 
in resistance of ECC processors to side channel attacks by 
enabling clock-stealers and other counter measures that 
would force the attacker to make large data requisitions. 
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