
International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Efficient Dynamic Resource Allocation Using
Nephele in a Cloud Environment

V.Praveenkumar, Dr.S.Sujatha, R.Chinnasamy

Abstract— Today, Infrastructure-as-a-Service (IaaS) cloud providers have incorporated parallel data processing framework
in their clouds for performing Many-task computing (MTC) applications. Parallel data processing framework reduces time
and cost in processing the substantial amount of users’ data. Nephele is a dynamic resource allocating parallel data
processing framework, which is designed for dynamic and heterogeneous cluster environments. The existing framework
does not support to monitor resource overload or under utilization, during job execution, efficiently. In this paper, we have
proposed a framework based on Nephele, which aims to manage the resources automatically, while executing the job.
Based on this framework, we have performed extended evaluations of Map Reduce-inspired data processing task, on an
IaaS cloud system and compared the results with Nephele framework.

 Index Terms— IaaS, high-throughput computing, Nephele, Map Reduce
.

—————————— ——————————

1 INTRODUCTION

 ROWING organizations have been processing immense
amount of data in a cost effective manner using cloud
computing mechanism. More of the cloud providers like

Google, Yahoo, Microsoft and Amazon are available for
processing these data. Instead of creating large data centers
which are expensive, these providers move into architectural
paradigm with commodity servers, to process these huge data
[3]. Problems such as processing crawled documents or web
request logs are divided into subtasks and these subtasks are
distributed into the available nodes for parallel processing.
 In order to process these distributed subtasks, all the cloud
providers have integrated the framework in their clouds on the
top of the architecture. Most popular frameworks are Google’s
Map Reduce *5+, Microsoft’s Dryad *9+ and Yahoo!’s Map-
Reduce-Merge [4]. These frameworks differ in design, their
programming models share similar objectives, namely hiding
the hassle of parallel programming, fault tolerance, and execu-
tion optimizations from the developer. The applications can be
classified in terms like high-throughput computing or Many-
Task computing based on the amount of data and the available
number of tasks [12]. The applications can be written as se-
quential codes by the developer. The processing framework
takes care of these tasks by distributing these into available
nodes and executes each instance of the program on the ap-
propriate fragment of data.

Growing companies processing their huge data in their own

data center are obviously not an option. Instead, IaaS cloud
providers such as Amazon EC2 provides same infrastructure
as in the company’s infrastructure in a pay-as you-go manner
[1]. They provide complete control such as allocate and access
the computing resources such as virtual machines (VMs),
memory and processor. The charges apply for a period of time
only when the virtual machines are allocated while processing.
The virtual machines are categorized in different types based
on their characteristics and cost.

VM abstraction of IaaS cloud fits the architectural paradigm
so that the cloud providers integrate their processing frame-
work in the cloud. The frameworks are imitating that they dy-
namically allocated the resources for processing. But they are
allocating the resources from the beginning and won’t de-
allocate when the VM finished that work. As a result, rented
resources may be inadequate for processing job, which may
lower the overall processing performance and increase the cost.

Nephele is the first dynamic resource allocating framework
[15]. This framework dynamically allocates the VM when
needed for processing and de-allocates the VM when it com-
pletes its work or is not used for a long time, while job execu-
tion, automatically. But, Nephele fails to monitor the resource
overload or underutilization while job execution, efficiently. In
this paper, we have proposed a new parallel processing
framework based on Nephele, which aims to manage the re-
sources automatically while executing the job. Based on this
framework, we perform extended evaluations of Map Reduce-
inspired data processing task on an IaaS cloud system and
compare the results with Nephele framework.

.

2 RELATED WORK

Many-Task computing has been developed to accomplish
many computational tasks over a short period of time, using a
large number of resources, in a variety of systems. These sys-

G

————————————————

 Praveenkumar is currently pursuing masters degree program in pervasive
computing Technologies in Anna UniversityTrichy, India, PH-
9976478020. E-mail: praveen.k930@gmail.com

 Dr.S.Sujatha is currently working as Assistant professer in master of com-
puter application in Anna University Trichy, India, PH-01123456789. E-
mail: sujatha@tau.edu.in

 R,Chinnasamy is currently pursuing masters degree program in pervasive
computing Technologies in Anna UniversityTrichy, India, PH-
9843248702. E-mail: chinnasamyrp @gmail.com

mailto:sujatha@tau.edu.in

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

tems share the common goals such as hiding issues of paral-
lelism, data distribution or fault tolerance, they aim at differ-
ent fields of application.

Map Reduce [5] (or the open source version Hadoop [25])
runs on a large static cluster of commodity machines and
process large amounts of data. Map Reduce is simple and can
process huge data only when the job fits into the map and re-
duce pattern. In order to process an immense amount of data,
programmer has to write the code in distinct map and reduce
the program. The processing framework takes care of schedul-
ing the tasks and executing them. Similarly many frameworks
were introduced to coordinate the execution of a sequence of
Map Reduce jobs [10], [11].

Deelman [6] introduced the Pegasus framework designed
for mapping complex scientific workflows onto grid systems.
In Pegasus, the users have to describe their jobs as a DAG with
vertices representing the tasks and edges representing the de-
pendencies between them. The created workflows remain ab-
stract until Pegasus creates the mapping between the given
tasks and the concrete computing resources available at run-
time. The authors incorporate the aspects like the scheduling
horizon which determines at which point of time a task of the
overall processing job should apply for a computing resource.
In contrast, Pegasus’ scheduling horizon is used to deal with
unexpected changes in the execution environment. Pegasus
uses DAGMan and Condor-G [8] as its execution engine for
processing the workflows.

Daniel Warneke [15] introduced the Nephele framework
designed for dynamically allocating the resource in the IaaS
cloud for task scheduling and execution. In this framework
processing job split into a number of subtasks, which are as-
signed to different types of virtual machines and are executed
automatically. Scheduling horizon in the Pegasus framework
[6] is related to the stage concept in Nephele, which is de-
signed to minimize the number of allocated instances in the
cloud and clearly focuses on reducing costs.

Nephele and Dryad [9] have some similar approaches like
runs DAG-based jobs and offers to connect the involved tasks
through file, network or in-memory channels. However,
Dryad assumes an execution environment which consists of a
fixed set of homogeneous worker nodes. Its scheduler is de-
signed to distribute tasks across the available computing
nodes in a way that optimizes the throughput of the overall
cluster. It does not include the notion of processing cost for
particular job.

Some of the on-demand resource providing projects arose
recently. Dornemann [7] presented an approach to handle
peak-load situations in BPEL workflows using Amazon EC2.
Ramakrishnan [13] discussed how to provide a uniform re-
source abstraction over grid and cloud resources for scientific
workflows. Both projects rather aim at batch-driven work-
flows than the data intensive, pipelined workflows which
Nephele focuses on.

3 PROBLEM STATEMENT

The IaaS cloud providers integrate the processing frame-

work to reduce the processing time and provide simplicity to
the users. Reducing process time leads to reduction in the cost
for attracting the users to use their cloud services. Several
frameworks have been developed with some specific features
(e.g. To reduce cost or increase performance) for cloud which
reduce the complexities for the user. However, the existing
well known frameworks like Google’s MapReduce, Yahoo’s
MapReduceMerge need the job to be written in a distinct map
and reduce program by the developer. MapReduce is very
rigid, forcing every computation to be structured as a se-
quence of map-reduce pairs. Nephele framework introduces
some basic issues for Dynamic allocation of instances.
The existing Nephele framework has some difficulties with the
resource overload and underutilization problems during job
execution. And also Nephele needs more user annotations to
execute the tasks.

3 OVERVIEW OF EXTENDED NEPHELE FRAMEWORK

 Proposed framework follows most of the existing Frame-
work Nepheles’ functionality. This framework differs by in-
cluding the resource monitor and resource manager in the
Nephele Framework to perform load balancing automatically
during job execution.

3.1 Architecture

Extended framework follows a classic master-worker pat-
tern to process the given sequential code in the IaaS cloud. The
extended framework describes the master node (i.e. VM) as
Job Manager (JM) which is started before submitting the job to
execute. The Job Manager, receives the clients’ jobs, is respon-
sible for scheduling them and coordinates their execution. It is
capable of communicating with the Cloud Controller interface
which the cloud operator provides to control the instantiation
of VMs. By means of the Cloud Controller the Job Manager
can allocate or deallocate VMs according to the current job
execution phase. VMs are referred by instances as per the
common cloud computing terminology. The term instance
type will be used to differentiate between VMs with different
hardware characteristics. For example, the instance type
“small instance” could denote VMs with one CPU core, 1.7 GB
of RAM, and a 160 GB disk while the instance type “Extra
large” could refer to machines with 8 CPU cores, 16 GB RAM
and a 1690 GB disk.

The executions of tasks are carried out by a set of in-
stances called Task Managers (TM). These worker nodes re-
ceive one or more tasks from the Job Manager at a time, exe-
cute them, and after that, inform the Job Manager about their
completion or possible errors. JM allocates the subtasks to the
TM according to the type and size of the job. The newly allo-
cated instances boot up with a previously compiled VM im-
age. The image is configured to automatically start a Task
Manager and register it with the Job Manager. Once all the
necessary Task Managers have successfully contacted the Job
Manager, it triggers the execution of the scheduled job.

Resource monitor is used to calibrate the amount of sub-
tasks being distributed to each instance (VMs) by using the
Resource Manager. Resource Manager is the responsible for

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

reallocating the subtasks to the instances according to the exe-
cution phase.

The following figure shows the Extended Nephele struc-
ture.

Fig. 1. illustrates the extraneous work done by the pro-

posed parallel data processing framework in performing the
parallel execution of tasks on the supplied job and monitoring
the resource utilization of a task that makes of the parallel
computing capabilities of the cloud.

Initially, the VM images used to boot up the Task Manag-
ers are blank and do not contain any of the data the Nephele
job is supposed to operate on. As a result, we expect the cloud
to offer persistent storage (like, e.g., Amazon S3 [2]). This per-
sistent storage is supposed to store the job’s input data and
eventually receive its output data. It must be accessible for
both the Job Manager as well as for the set of Task Managers,
even if they are connected by a private or virtual network.

3.2 Job Description

The job of the Extended Nephele Framework is expressed
as a directed acyclic graph (DAG) which allows tasks to have
multiple inputs and output gates. Each vertex in the graph
represents a task of the overall processing job; the graph’s
edges define the communication flow between these tasks.

Defining an Extended Nephele job comprises three
mandatory steps:

First, the user must write the program code for each task
of his processing job or select it from an external library. Sec-

ond, the task program must be assigned to a vertex. Finally,
the vertices must be connected by edges to define the commu-
nication paths of the job.

The user has to submit the job as the DAG graph which
specifies the tasks as the vertices and communication flow as
the edges. This DAG graph is called as the Job Graph in the
Extended Nephele framework. Users should be able to de-
scribe the tasks and the relationships on the abstract level

.

Fig. 2. illustrates the simplest Job graph which consists of
one input, one Task and one output vertex. For generating the
job graph user must have some ideas about aspects like num-
ber of subtasks, number of subtasks per instances, sharing
instances between tasks, channel types and instance types for
job descriptions.

Once the Job Graph is specified, the user submits it to the
Job Manager together with the credentials which the user has
obtained from the cloud operator. The credentials are required
since the Job Manager must allocate/deallocate instances dur-
ing the job execution.

3.3 Job Scheduling and Execution

After receiving the valid Job Graph the JM converts it into
the Execution Graph which is the primary data structure for
scheduling and monitoring the execution of the extended
Nephele job. It contains all the concrete information required
to schedule and execute the tasks in the cloud. Fig. 3. Shows
the Execution Graph for the given Job Graph (i.e, Fig. 2.). Here
Task 1 is, e.g., Split into two parallel subtasks which are both
connected to the task Output 1 using file channels and are all
scheduled to run on the same instance.

Fig. 1. Structural overview of the Extended Nephele Frame-

work running in an Infrastructure-as-a-Service (IaaS) cloud.
.

Fig. 2. An example of Job Graph.

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 4

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The Basic Execution Graph structure is no longer a pure

DAG. It resembles in two different levels of details, an abstract
level and a concrete level. On the abstract level, the Execution
Graph equals the user’s Job Graph. In the concrete level more
fine-grained graph defines the mapping of subtasks to in-
stances and the communication channels between them.

Execution Graph consists of a Group Vertex for every ver-
tex in Job Graph represent distinct tasks of the overall job.
Execution stages are used to avoid the instance type availabil-
ity problems in the cloud. Subtasks are represented in the Exe-
cution graph called Execution vertex which is controlled by its
corresponding Group vertex. Each subtask is mapped to an
Execution Instance which is defined by an ID and an instance
type representing the hardware characteristics of the corre-
sponding VM.

After submitting the job to the JM, it divides the job into
subtasks and schedules them into a number of Task managers
according to the number of subtasks. These subtasks are given
to the TM using the any type of channel according to the type
of the job. The channel may be network, file or in-memory
channel.

3.4 Load Balancing

After the execution starts the TM must be monitored for
providing better performance. While executing if any of the
instances execute more tasks compared to others it may cause
resource overload problem. Or at the same time any of the
instances are process below the normal processing range it
cause underutilization problem. These two problems take ef-
fect in the billing charges. To overcome this inside the IaaS
cloud there must be a resource monitor check the TM and has

to load balance the resource. This can be done by using user
notification or by the job manager has to allocate/deallocate
resource according to the memory used in the instances.

The framework does a runtime based analysis and moni-
toring of the utilization of the allocated resources by the task
that performs parallel computation and solves the discrepan-
cies (overutilization of underutilization of the allocated re-
sources) and does the corresponding actions like allocating or
de-allocating the needed resource and thus saving the cost of
computation involved in the task thereby reducing the time
consumed and also the capital expenditure consumed. The
idea illustrated by the above figure is explained by the follow-
ing pseudo code.

4 CONCLUSION

In this paper we proposed a parallel processing frame-
work extending Nephele which avoids the resource overload
and underutilization during job execution and executed a
word count application based on this framework presented a
performance comparison to the Nephele framework and
found out as a substantial methodology for using the allocated
resources efficiently without wasting the resource thereby re-
ducing the cost involved in the computation task. For future
work we are working for including a Scheduling algorithm in
this parallel processing framework which reduces the user
notification to execute the job.

Fig. 3. An Execution Graph created from the original Job Graph.

Initialize the job scheduler

Init()

#Allocate the resources

allocateResource()

int x=calculateMemoryNeeded();

allocateAppropriateMemory(x,num_instances);

startResourceMonitor();

if(resource_occupancy<allocated_memory){

int x=calculateDifference(instance);

reduceAmount(x,instance);

}

if(resource_occupancy>allocated_memory){

int x=calculateDifference(instance);

addAmount(x,instance);
}

International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

REFERENCES

[1] Amazon Web Services LLC,” Amazon Elastic Compute
Cloud|(Amazon EC2),”,htthttp://aws.amazon.com/ec2 /, 2012

[2] Amazon Web Services LLC, “Amazon Simple Storage
Service,”http://aws.amazon.com/s3/ , 2012.

[3] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S.
Weaver, and J. Zhou, “SCOPE: Easy and Efficient Parallel Processing
of Massive Data Sets,” Proc. Very Large Database

[4] H. Chih Yang, A. Dasdan, R.-L. Hsiao, and D.S. Parker, “Map-
Reduce-Merge: Simplified Relational Data Processing on Large
Clusters,” Proc. ACM SIGMOD Int’l Conf. Management of Data, 2007

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Proc. Sixth Conf. Symp. Operating Systems
Design and Implementation (OSDI ’04), p. 10, 2004

[6] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G.B. Berriman, J. Good, A. Laity, J.C. Jacob, and D.S.
Katz, “Pegasus: A Framework for Mapping Complex Scientific
Workflows onto Distributed Systems,” Scientific Programming, vol.
13, no. 3, pp. 219-237, 2005.

[7] T. Dornemann, E. Juhnke, and B. Freisleben, “On-Demand Resource
Provisioning for BPEL Workflows Using Amazon’s Elastic Compute
Cloud,” Proc. Ninth IEEE/ACM Int’l Symp. Cluster Computing and
the Grid (CCGRID ’09), pp. 140-147, 2009

[8] J. Frey, T. Tannenbaum, M. Livonia, I. Foster, and S. Tuecke,
“Condor-G: A Computation Management Agent for Multi-
Institutional Grids,” Cluster Computing, vol. 5, no. 3, pp. 237-246,
2002

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed Data-Parallel Programs from Sequential Building
Blocks,” Proc. Second ACM SIGOPS/EuroSys European
Conf.Computer Systems (EuroSys ’07), pp. 59-72, 2007[10]

[10] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
Latin: A Not-So-Foreign Language for Data Processing,” Proc. ACM
SIGMOD Int’l Conf. Management of Data, pp. 1099-1110, 2008.

[11] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan, “Interpreting the
Data: Parallel Analysis with Sawzall,” Scientific Programming, vol.
13, no. 4, pp. 277-298, 2005.

[12] I. Raicu, I. Foster, and Y. Zhao, “Many-Task Computing for Grids
and Supercomputers,” Proc. Workshop Many-Task Computing on
Grids and Supercomputers, pp. 1-11, Nov. 2008.

[13] L. Ramakrishnan, C. Koelbel, Y.-S. Lee, R. Wolski, D. Nurmi, D.
Gannon, G. Obertelli, A. YarKhan, A. Mandal, T.M. Huang, K.
Thyagaraja, and D. Zagorodnov, “VGrADS: Enabling e-Science
Workflows on Grids and Clouds with Fault Tolerance,” Proc. Conf.
High Performance Computing Networking, Storage and Analysis
(SC ’09), pp. 1-12, 2009.

[14] The Apache Software Foundation “Welcome to Hadoop!”
http://hadoop.apache.org/,2012

[15] D. Warneke and O. Kao, “Nephele: Efficient Parallel Data Processing
in the Cloud,” Proc. Second Workshop Many-Task Computing on
Grids and Supercomputers (MTAGS ’09), pp. 1-10, 2009

[16] T. White, Hadoop: The Definitive Guide. O’Reilly Media, 2009.
Endowment, vol. 1, no. 2, pp. 1265-1276, 2008.

