
International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           1 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

Design, Synthesis and FPGA-based 
Implementation of a 32-bit Digital Signal Processor 

Tasnim Ferdous 

 
Abstract—With the advent of personal computer, smart phones, gaming and other multimedia devices, the demand for DSP processors in semi-

conductor industry and modern life is ever increasing. Traditional DSP processors which are special purpose (custom logic) logic , added to essentially 

general purpose processors, no longer tends to meet the ever increasing demand for processing power. Today FPGAs have become an important 

platform for implementing high–end DSP applications and DSP processors because of their inherent parallelism and fast processing speed. This design 

work models and synthesizes a 32 bit two stage pipelined DSP processor for implementation on a Xilinx Spartan-3E (XC3S500e) FPGA. The design is 

optimized for speed constraint. A hazard free pipelined architecture and a dedicated single cycle integer Multiply-Accumulator (MAC) contribute in 

enhancing processing speed of this design. The design maintains a restricted instruction set, and consists of four major components: 1) the hazard free 

speed optimized Control unit, 2) a two stage pipelined data path, 3) a single cycle multiply and accumulator (MAC) and 4) a system memory. Harvard 

architecture is used to improve the processor’s performance as both memories (program and data memory) are accessed simultaneously. The complete 

processor design has been defined in VHDL. Functionalities of designed processor are verified through Functional Simulation using Modelsim SE 6.5 

simulator. The design is placed and routed for a Xilinx Spartan-3E FPGA. 

 

Index Terms— Digital Signal Processor, VHDL, Two stage Pipeline, Single cycle MAC, Hazard handling, FPGA, Speed optimization 

——————————      ——————————

1    INTRODUCTION 
HE demand for high speed processors in semi-

conductor industry and modern life is ever increasing. 

Many research efforts were made to optimize speed of 

conventional processors, which has a result of successful 

integration of complex signal processing modules [1].  The 

information world is migrating from analog to DSP based 

systems to support the high speed processing. The DSP based 

systems are mostly convenient with real time signal 

processing of analog signals, received from the real world [2]. 

To comply with the advanced processing needs, this design 

work intended to model a 32 bit pipelined Digital Signal 

Processor. One important focus of this work is to design and 

implement a 32-bit two stage pipelined Digital Signal 

Processor which can manipulate the digital filtering (i.e. FIR 

filtering). For this reason, a 32 bit Digital Signal Processor is 

modeled with behavioral VHDL (at Register Transfer Level 

with explicit coding style). 

 The processor is integrated with a two stage pipeline which 

optimizes the speed by reducing propagation delay. The 

reduced propagation delay is achieved by allocating every 

step of a processing job into independent pieces of hardware 

in parallel and by running all the jobs in parallel. This two 

stage pipeline also provides a better CPI (Cycle per 

Instruction) of 1 because all the instructions need only 2 cycles 

to complete an operation. The data path and pipeline 

architecture is improved with a hazard free finite state 

machine to ensure better performance of the processor.  

Besides possessing many of the features of a general-

purpose microprocessor, a DSP processor is also characterized 

by fast multiply-accumulate, multiple-access memory 

architecture [3]. The memory and bus architecture design of a 

Digital Signal Processor is guided by optimization of speed. 

Data and instructions must flow into the numeric and 

sequencing sections of the DSP on every instruction cycle [4].  

 

There can be no delays, no bottlenecks. Everything about the 

design focuses on throughput. To put this focus on 

throughput in perspective, Harvard architecture is used in 

which memory is typically divided into separate program and 

data memory [4]. By using Harvard architecture instead Von 

Neumann architecture, it doubles the throughput of this 

processor as separation of data and instructions gives this DSP 

processor the ability to fetch multiple items on each cycle.  

FPGAs are well suited for reducing combinational path as 

well as employing parallel operations which can provide a 

better solution for manipulating speed [5]. In addition to this, 

DSP processor, implemented in FPGAs has started to 

outperform for most DSP applications [6]. Today’s FPGAs due 

to advancements in VLSI have started to close the delay and 

power gap with ASIC [7]. A design implemented on XILINX 

Spartan-3E can be a superior alternative to mask programmed 

ASICs [5]. This FPGA has the ability to provide high 

throughput and avoid the high initial cost, the lengthy 

development cycles, and the inherent inflexibility of 

conventional ASICs [8]. FPGA programmability permits 

design upgrades in the field with no hardware replacement 

necessary, an impossibility with ASICs [9]. This can help the 

designer to perform the basic processes faster. In addition to 

this, digital filter implementation on FPGAs allow higher 

sampling rates than available from traditional DSP chips and 

lower cost [10]. These advantages were the key reasons for 

choosing FPGA for the implementation of this design work. 

For digital filter applications, an efficient MAC operation  

(Multiplies two operands and then adds to a third operand) 

requires one single system clock cycle to compute a successful 

filter output [11]. This designed DSP processor supports the 

basic functionalities that a DSP processor should support–the 

multiply and accumulate (MAC) operation. One important 

goal of this operation is to model and synthesize a dedicated 

T 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           2 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

MAC unit so that FIR filtering computations can be done in 

one cycle. 

The VHDL language provides a versatile set of description 

facilities to model DSP circuits from the system level to the 

gate level [12]. VHDL system- level features, such as user-

defined data types, package (global design unit containing 

declarations) and Generate for structural replication, makes 

VHDL an ideal choice for modeling and implementing DSP 

applications and DSP processors. All these reasons are 

responsible why the proposed DSP processor is defined with 

VHDL language.  

Some highlighted features of the proposed processor are: 

1. Pipelined data-path design 

2. Separate instruction and data memory (Harvard 

memory structure) for speed optimization. 

3. Single cycle MAC 

4. Hazard free Finite State Machine  

 

The rest of the paper is organized as follows: Next section 

depicts the control unit design. Section 3 presents the data 

path design. Section 4 illustrates memory architecture for the 

proposed design. Section 5 shows the pipeline structure and 

the data forwarding techniques. Section 6 presents 

performance analysis and discussion. Finally, this paper 

concludes in section 7 with summarization of the design 

process and outlines to future works. 

 

2  CONTROL UNIT DESIGN 
The control unit is the key component for any processor to 

perform properly. Control units are typically implemented as 

FSMs (Finite State Machines) in hardware. So, control unit of 

this processor is designed using FSM which contains the 

necessary algorithm to control the hazard.  

2.1  Instruction Set design 

The computation speed of a DSP processor can be 

enhanced by incorporating General Purpose Processors (GPP) 

architectures into DSPs. The GPP helps to boost up speed by 

retaining the functions critical to DSP [13.14]. To enhance 

processing speed of this processor, a subset of the complete 

instruction set of a multicycle RISC processor is included in 

this design. The restricted instruction set of this DSP processor 

has given flexibility to this design to conduct RISC operations 

as well as DSP processing.    The processor core is divided into 

two parts. The general purpose data path is conducting the 

basic operations of the RISC processor. The dedicated 

processing unit MAC is used for conducting DSP (FIR filter) 

operation only. 

All the instructions are 32 bits long. There are total 27 

instructions that have been implemented in the design. 

According to their purposes, the instructions can be divided 

into eight groups which are illustrated in table 1. 

 

 

 

 

TABLE 1 

INSTRUCTION SET OF PROPOSED PROCESSOR 

 
A 32-bit instruction is encoded as follows. The most 

significant 4 bits represents the opcode (bit 31–bit 28).The next 

5 bits represent the ALU operation (bit 27–bit 23), next 3 bits 

represent the destination or source register (bit 22-bit 20), 

second source register (bit 19- bit 17) and the first source 

register (bit 16–bit 14) respectively. Next two bits are kept for 

branch condition. It is not necessary that all the three registers 

will be used in every instruction. The 12 LSB bits is used as the 

address offset. When a new instruction is fetched from the 

instruction memory, for example an arithmetic operation -   

ADD R1, R2, R3, 

 this will be encoded in the instruction memory in the 

following format: 

 
When this instruction comes to the controller and register 

file, the controller will interpret the opcode bits and will find 

that this is an add operation. The controller will output the 

corresponding control signals that set up the correct path for 

this operation. The register file will output the stored value for 

these corresponding registers. These data will be used as the 

source for the specified operations. 

2.2 Hazard Handling  

This design is modeled with a hazard free pipelined 

architecture which could handle two instructions 

simultaneously as it is a two stage pipelined processor. Since 

two instructions worked in parallel, the FSM is designed such 

a way that helped to detect any type of hazard and could 

control the data path to complete computation by solving the 

hazard. Hazard occurs when- 

1.    two load instructions are handled simultaneously 

2.    two instructions work with the same register 

content at a time (data hazard) 

3.    ALU is used for two instructions at a time 

(structural hazard) 

In this pipelined structure, the control unit is 

designed to solve the hazards and optimize speed. For the first 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           3 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

and second type of hazards, the controller is designed for 

receiving the data direct from the internal data bus, which 

keeps the most recent data fetched from memory or stored 

value of accumulator register. By taking the value from 

internal data bus, the new data is bypassed before decode and 

execution stage from accumulator register. This improvement 

saves 1 cycle as this is not taken from the register bank which 

needs 1 more cycle to update with the corresponding value. 

Thus the calculation provides right result without any hazard. 

Fig 1 shows the bypassing technique of the proposed DSP 

processor. 

 
Fig  1  Bypassing technique for avoiding data hazard 

The improvement for hazard free FSM can be identified by 

the comparison of the pipelined architecture with and without 

hazard handling capability. Table 2 is used here to illustrate 

the comparison. For easier identification, some values (R1= 2, 

R2 = 5, R3= 8, R4= 9, R5= 4) are assumed for the instructions 

(R3 <- R1+ R2, R5 <- R3+ R4). 
TABLE 2 

COMPARISON TABLE BETWEEN PIPELINE WITH AND WITHOUT HAZARD HANDLING CAPABILITY 

For the third type of hazard, a MUX is used instead of 

ALU, at the second stage of pipelining. The reason of using 

MUX for this modeling is to save ALU calculation from 

unwanted data, as a new instruction is using ALU at its first 

stage of calculation. 

In this pipelined structure, the control signals generated by 

the control unit are propagated down the pipeline 

synchronously with the system clock through pipeline 

registers. Besides, these control signals; there are two other 

types of control signals generated by the control unit. One is 

used for the memory read/write control signal and the other is 

used to control the ALU operation. 

 
3  DATA PATH DESIGN 

In this design, general purpose data path and dedicated 

mac unit follows the same method - pipelining. Some key 

components of the data path will be discussed in this paper 

including the ALU, multiply and accumulator (MAC) and 

memory design. To enhance the speed, data path is designed 

through pipelining.  

 

3.1  ALU Design 

The arithmetic logic unit (ALU) is an essential part of 

computer processor. It performs the arithmetic operations 

(addition and subtraction) and logic operations (AND, OR, 

XOR etc.). The shifting and rotating tasks are also done 

through the ALU.  

The design contains two 32-bit data inputs alu_in1 and 

alu_in2, and a carry output carryout. The five control inputs 

ALUOP0, ALUOP1, ALUOP2, ALUOP3, and ALUOP4 decide 

which operation should be executed. The outputs include a 32-

bit arithmetic logic result and one of the three 1-bit flags 

(alu_out_pos: positive; alu_out_neg: negative; alu_out_zero: 

zero).  

The most time consuming operations in ALU operation are 

addition and subtraction [15]. In a ripple adder design, the 

adder propagates the carry from the lowest bit to the highest 

sequentially. Thus, the most significant bit of the sum must 

wait for the sequential evaluation of the previous thirty one 

(31) 1-bit adders, which creates large propagation delay. In 

theory, we can anticipate the carry input without waiting for it 

to be generated by the previous 1-bit adder component. This 

can be done by applying some calculations on the two 

operands and the carry input to the least significant bit of the 

adder. Delay for this kind of adder will be in order of log2N, 

where N is the bit number of the operands (32 in this case), 

instead of N as the usual ripple adder has [15]. Therefore, to 

increase the speed, a fast parallel adder, the Carry Look Ahead 

adder is used in this proposed design. 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           4 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

3.2  Dedicated MAC Design 

The proposed design contains a dedicated processing unit 

for multiply and accumulation. This design has implemented 

a 8 tap MAC. This MAC is dealing with sample values which 

are signed values. So the signed number is converted to 

unsigned number before it goes to the shift register file. As 

digital filtering operations needs only a single system clock 

cycle to perform the calculations, the corresponding MAC is 

modified to operate in one single cycle. The synthesis result of 

the single cycle operation is shown in Fig 2.  

 
Fig  2 Simulation result of single cycle MAC 

This is a dedicated processing unit for manipulating FIR 

filter operation. The MAC datapath is kept apart from the 

general purpose datapath where ALU is free from filtering 

task to deal with other instructions. For this two stage 

pipelined DSP processor, ALU needs 10 cycles to complete a 

two bit multiplication. The comparison between ALU and 

single cycle MAC is given below where the total required 

cycles are shown in table 3 to complete 2*2 multiplications. 
TABLE 3 

COMPARISON TABLE BETWEEN ALU AND MAC FOR EXECUTING 

2*2 MULTIPLICATIONS 

 
The benefit of using the external multiplier and 

accumulator (MAC) unit is to improve the speed. Since, in a 

single cycle implementation of MAC, computations are done 

by a large number of hardware components in only one cycle, 

the duration of the clock cycle must be longer (twice) than the 

summation of all propagation delays of individual hardware 

components. To reduce the propagation delay, eight external 

multipliers are working parallelly which reduces clock period.  

This issue enhances speed of the processor which improves 

overall system performance.  

Ideally, a traditional multiplier could be used here but n*n 

multiplication will give a result of 2n. This can increase the 

memory requirement and complexity. To overcome this, 

multiplier multiplies the lower 16-bit data from both 

operands. Thus, 16*16 multiplications will give result of 32 

bits which eliminates complexity. Based on the timing 

analysis, the worst case delay of one multiplier is 23.764. 

Using one multiplier for overall calculation, the delay would 

be 23.764*8 = 190.112. By using eight traditional multipliers, 

the delay is now only 23.764 as all the multiplications are 

performed parallelly to compute the filter output. This 

improves the overall speed. Then all the multiplications 

results were added by a dedicated adder. Again flexibility is 

kept in this design where the MAC could either manipulate 

with four sample values or eight sample values. So four extra 

MUX were used to pass zero to the multiplier when number. 

of taps is four. This helped to eliminate invalid data from the 

filter value. To conduct parallel operations by the multipliers, 

it is required to receive all the sample valus simultaneously. 

To solve this problem. this design performs filtering operation 

only after all the   shift registers are filled with sample values. 

The loadable eight shift registers are loaded with the previous 

register’s value. So the oldest data is lost each time. 

3.3 FIR filter Design 

Finite Impulse Response (FIR) filter design task is the 

recurring technical task in the development of digital signal 

processing products and systems [16]. The digital filtering part 

of this processor is designed such a way so that it can perform 

continuous filtering until user stops the filtering. The sample 

program is shown in table 4 and functional simulation for FIR 

filter of this DSP processor is shown in Fig 3. 

TABLE 4 

THE SAMPLE PROGRAM FOR FIR FILTER OF PROPOSED DSP 

PROCESSOR 

 
It can be seen from this simulation that, at cycle-3 the FIR 

filter instruction is fetched and the EX1 stage started to 

operate. For this instruction, the external datapath or the 

special purpose datapath calculates the filter output. The 

output (here the values are- 232, 253) is passed through the 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           5 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

ALU to the accumulator register. At next Active clock Edge, 

this filter output is loaded to the register file.  

 

Fig  3  The functional simulation for FIR filter of proposed DSP processor 

 

The FIR filtering is a continuous filtering of a real world 

signal. Thus the filter operation requires the information for 

stopping filtering. A user dependent signal Mac_reset is 

checked for this purpose. If the Mac_reset is found low then 

filtering is continued and no new instruction will be fetched. 

The simulation shows the next  instruction fetched is a FIR 

filter instruction as user is not yet stopped filter operation 

(Mac_reset = 0 at cycle 4). The reset signal is pressed before 

cycle-5 which stops the filtering and fetches a new instruction. 

After the reset signal is pressed, no filter output is loaded to the 

register which demonstrates the continuous filtering operation 

of the proposed DSP processor. 

 

4   MEMORY DESIGN 
Typical Von Neumann architecture has only one common 

memory which is used for either instruction fetch or data 

transfer [17]. The Von Neumann architecture uses only a 

single memory bus for both data memory and instruction 

memory. This is economical and simple to use because the 

instructions or data can be located anywhere throughout the 

available memory. Von Neumann architecture does not 

permit multiple memory accesses.  

A reduced Cycle per Instructions (CPI) requires more than 

one memory access per clock cycle. With this memory 

architecture, reduced CPI cannot be achieved. For some 

instructions, it is necessary to access data memory once at 

most (e.g. LD, ST). To fetch the two operands in a single 

instruction cycle, we need to make two memory accesses 

simultaneously. Typical DSP operations require many 

additions and multiplications. The DSP processor needs to 

access both data and instruction memory simultaneously to 

perform the multiplication and addition faster. The two stage 

pipeline of the proposed processor is designed such a way that 

it requires both instruction and data operands simultaneously 

to perform an operation. To achieve faster memory accesses 

per instruction cycle this design follows Harvard architecture 

which has separate instruction and data memories. The 

utilization of normal Harvard architecture which has two 

separate physical memory buses, allows the proposed design 

to support two simultaneous memory accesses: a) one for 

instruction memory and b) one for data memory. The 

separation of memories allows no address conflicting between  

 

the two memories by providing the ability of simultaneous 

memory access. Therefore, it is possible to improve the speed 

easily. Fig 4 illustrated the used Harvard architecture for the 

proposed design.  

A

D

D

R

E

S

S

 

B

U

S

C

O

N

T

R

O

L

E

R

Program 

Memory

Data Memory

MAC

R

E

G

F

I

L

E

A

L

U

32 bit instruction
Data address

Instruction 

Address

 i
n

s
tr

u
c
ti

o
n

 a
d

d
r
e
s
s

D
a

ta
 a

d
d

r
e
s
s

32 bit Data

Pipelined 

datapath

D
a

ta
 P

a
th

 
Fig  4  Used Harvard architecture for proposed design. 

If we take a look in ARM7 pipelined processor which used 

Von Neumann architecture then we can see that the ARM7 

has 2^20 = 1 M of the ROM address space and 2^19 = 512 k of 

the RAM address space in the same memory module [17]. The 

proposed design has 32 bit addressing both for data and 

instruction memory which allows the highest memory size to 

be 2^32 = 4GB for the design. Thus, the larger memory can be 

a benefit for faster processing. For this design, total memory 

usage is 93.896 megabytes. 

For the safe design purpose or control over unwanted 

memory output, a tristate buffer is used in the output of data 

memory. The purpose is to keep the data bus unconnected 

when it is not accessed by the processor. This helps to save the 

calculation from unwanted data.  

 

5    PIPELINING AND DATA FORWARDING 
The most important issue is to develop the design with two 

stage pipeline architecture. The pipelined structure is the heart 

of this design and responsible for speed optimization. In this 

design, both data paths include a single pipeline with two 



International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           6 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

stages: Execution Stage1, Execution Stage2.  In first cycle, 

Execution stage1 (fetch, decode & execute) is performed.. 

Execution stage 2(Mem & WB) operates in the next clock cycle.  

The primary reason for separating the stages is to keep the 

system clock operates faster with less combinational delay. To 

enhance the speed, the general purpose data path is modified 

by adding some dedicated registers. For the load or store type 

operation, a special register is used which helped to complete 

any load or store type operation only in two clock cycles. All 

instructions of this processor can be executed within two clock 

cycles. All the stages of proposed processor were 

synchronized with system clock. Fig 5 shows the two stage 

pipelined diagram of the proposed processor. 

For this pipelined architecture, the FSM is designed in a 

manner to handle any instruction between two stages. The 

processor utilizes highest 2 clock cycles for any instruction to 

complete with manipulation of hazard. A new instruction is 

fetched during each clock cycle.  

The data forwarding method is used in the design when 

two loads are dealing with same operand as destination and 

source. Thus, the EX2 stage is moved to the front of the EX1 

stage. 
Fig  5  System diagram of Proposed 32 bit  Pipelined DSP Processor 

 

6   PERFORMANCE ANALYSIS AND DISCUSSIONS 

Performance gain of the proposed DSP processor is 

demonstrated through comparing among pipeline stages. 

Based on the timing specification from the synthesis result of 

each system building component, as shown in table 5, we get 

the execution time for all the instructions depending on 

different routes. It is clear from the table that timing 

specification which determines that execution time is almost 

equally distributed into all the pipeline stages. 
TABLE 5 

TIMING ANALYSIS AMONG PIPELINE STAGES 

 
 

 

By considering the worst case delays, the speed of the 

processor is found around 13 MHz. The proposed design has 

implemented 27 instructions which requires 28 cycles to 

complete execution of all the instructions. Thus the 

throughput of proposed DSP processor= 27/(28* 80ns) = 12.06 

MB/s. 

E

X

E

C

U

T

E

 

1

A

D

D

R

E

S

S

 

B

U

S

C

O

N

T

R

O

L

E

R

INSTRUCTION 

MEMORY

DATA

MEMORY

PC

IR1 IR2

MAC

(CO- PROCESSOR)

IMMIDIATE 

DATA

R

E

G

I

S

T

E

R

F

I

L

E

A

L

U

ADDRESS 

REGISTER

ACCUMUL

ATOR 

REGISTER

Ir2

IR1

Reg 

data
jump

branch

aluop1

aluop2
Chip select

Load 

pc
nop

mult

address

Immidi

ate data

accumulator

 in
st

ru
ct

io
n

 a
d

d
re

ss

D
at

a 
ad

d
re

ss

32 bit instruction

32 bit instruction

A

L

U

B

U

S

ALU bus

Instruction Address

Data address

A

L

U

 O

U

T

ACCUMULATOR OUT

I

N

T

E

R

N

A

L

D

A

T

A

B

U

S

ALU OUT

32 bit data

EX1(IF)

EX2(Mem & WB)

E

X

E

C

U

T

E 

1

EX1(ID)

E

X

E

C

U

T

E

EX1

decode

execute

Alu_outWB

ACC



International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           7 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

With pipelining we can improve the CPI by exploiting 

instruction level parallelism which helps to fetch 1 instruction 

in every cycle. As a result, two instructions are completed in 

two cycles in this two stage pipelined processor. With a single-

issue processor, the best CPI attainable is 1 [18].  CPI of 

proposed processor is shown below, (assuming the program 

has 1 R-type instruction, 1 load instruction). 

 CLK        1                 2                               3                          

 R    EX1(IF,ID,EX)  EX2(Mem,WB) 

 LD                          EX1(IF,ID,EX)   EX2(Mem,WB) 

 CPI of proposed DSP processor =2/2 = 1. 

The reduced CPI is helpful for reducing cycle wastage and 

improving clock rate. With a less CPI of 1, the performance 

will be better in proposed design. To complete an individual 

instruction, the proposed processor takes two clock cycles 

(that is, it has two-cycle latency) [19]. This helps to gain higher 

processing speed in the new design.  

The proposed design has an ability to handle the pipelined 

stages in parallel. This ability helps the processor to reduce the 

clock cycle and increases speed. The simultaneous memory 

access as well as write back strategy improved the 

performance without stalling when memory access is not 

available.  

 

7   CONCLUSIONS AND FUTURE WORK 

In this paper, a 32-bit two stage pipelined DSP processor is 

modeled. The complete system is defined in VHDL and 

simulated and tested using Modelsim 6.5. Each system 

building component is synthesized using the Xilinx 8.2i and 

then implemented on Xilinx Spartan-3E FPGA which proved 

to work properly. All the operations were verified with 

functional simulations which demonstrate that the FSM of this 

two stage pipelined DSP processor can successfully 

manipulate two instructions at a time even if they have 

hazards and produce correct cycle by cycle timing. To 

properly analyze the operations of this processor, each 

operation is checked with post fit simulation. This simulation 

successfully matches with the functional or behavioral 

simulation which validates the successful operation of the 

proposed DSP processor. Based on the synthesis result and 

timing evaluation of each system building components, the 

speed and throughput of the processor are found around 13 

MHz and 12.06MB/sec respectively.   

In future, the performance of this processor can be 

improved by further extending the number of pipeline stages 

and by providing support for floating point operations. The 

pipelining portion of the processor can be improved by 

increasing number of stages and by adding more high 

performance units to enhance the calculation speed.  

REFERENCES 

[1] M. E. A. Ibrahim, M. Rupp , and H.A. H. Fahmy, “Power Estimation 

Methodology for VLIW Digital Signal Processors,” Proc. ACSSC, 2008. 

[2] V. Gnatyuk and C. Runesson, “A Multimedia DSP processor design”, 

M.S. Thesis, Department of Electrical and Electronics, Linkoping 

University, Sweden,  2004. 

[3] K. Karuri and R. Leupers, Application Analysis Tools for ASIP Design: 

Application Profiling and Instruction-set Customization, 1st ed., Springer, pp. 

6-11, 2011. 

[4] D. Skolnick and N. Levine, “An Introductory Course in DSP System 

Design,” Analog devices, 

http://www.analog.com/library/analogDialogue/archives/31-1/DSP.html. 

1997 

[5] “Xilinx Spartan-3 FPGA Family Data Sheet,” Product Specification 

DS312, Xilinx, Calif, Nov. 2006. 

[6] A Primer on FPGA-based DSP Applications, Trends, Options, 

Considerations, and Tools for Using Re-configurable FPGA Platforms as 

an Alternative to Dedicated DSP Hardware, White Paper, Acromag, 

Wixom, MI,  May, 2008.  

[7] D. Zaretsky, M. Mittal, T. Xiaoyong , P. Banerjee, “Overview of the 

FREEDOM compiler for mapping DSP software to FPGAs,” Proc. FCCM, 

p.37, 2004. 

[8] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” 

IEEE Transactions on Computer-Aided Design of Integrated Circuits and 

Systems, vol. 26, no. 2, pp. 203-215,  Feb. 2007, doi: 

10.1109/TCAD.2006.884574. 

[9] J. Cong,  B. Xiao, “mrFPGA: A Novel FPGA Architecture 

withMemristor-Based Reconfiguration,” Proc. ACM International Symp. 

Nanoscale Architectures, pp. 1-8, July 2011,doi: 

 10.1109/NANOARCH.2011.5941476 

[10] C.-J. Chou, S. M. krishnan and J. B. Evans, “FPGA implementation of 

digital filters,” Proc. ICSPAT, 1993 

[11] J. Becker, M. Glesner, “A Parallel Dynamically Reconfigurable 

Architecture Designed for Flexible Application-Tailored 

Hardware/Software Systems in Future Mobile Communication”, The 

Journal of Supercomputing, vol.19, no.1,pp. 105-127, May 2001. 

[12] M. Ghosh, “Design and implementation of different multipliers using 

VHDL,” B.S. Thesis, Department of Electrical and Electronics, National 

Institute of Technology, Rourkela, India, 2007. 

[13] K. Anand  and  S. Gupta, “Designing Of Customized Digital Signal 

Processor” B.T. Thesis, Department of Electrical and Electronics, Indian 

Institute of Technology, Delhi, 2007. 

[14] Chattopadhyay, W. Ahmed, K. Karuri, D. Kammler, R. Leupers, G. 

Ascheid, H. Meyr, “Design Space Exploration of  Partially Re-configurable 

Embedded Processors,”  Proc. Design, Automation & Test in Europe 

Conference & Exhibition, p.319, 2007.  

[15] C. Li, L. Xiao, Q. Yu, P. Gillard and R. Venkatesan, "Design of a 

Pipelined DSP Processor - MUN DSP2000,"Proc. NECEC, 2000. 

 [16] J. Treichler, Retrieved from the Connexions., 

http://cnx.org/content/col10553/1.3/. 2009. 

[17] A. N. Sloss, D. Symes and C. Wright, “ARM System Developer’s Guide 

Designing and Optimizing System Software,” 1st ed., Morgan Kaufmann, pp. 

9-14, 2004. 

 [18] M. R.S. Balpande, M.R.S. Keote, “Design of FPGA based Instruction 

Fetch & Decode Module of  32-bit RISC (MIPS) Processor,” Proc. ICCSNT, 

p. 409, 2011.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zaretsky,%20D..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Mittal,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Xiaoyong%20Tang.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Banerjee,%20P..QT.&newsearch=partialPref


International Journal Of Scientific & Engineering Research, Volume 3, Issue 7, July-2012                                                                                                           8 

ISSN 2229-5518 

IJSER © 2012 

http://www.ijser.org  

[19] Altium PPC405A 32-bit RISC Processor, Product Specification Core Reference CR0156 (V 2.0), Altium, Shanghi, July 2006. 

 


