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Abstract— A mathematical model of an electrochemical enzyme biosensor is analyzed. This model is based on the existence of a 

convection layer, where the glucose concentration is maintained constant and a diffusion layer. This article deals with approximate 
analytical expressions of the system of non–linear differential equations that describe the kinetics of the enzyme-substrate reactions, 
according to the Michaelis-Menten scheme. The analytical expressions for the enzymes, substrate and product have been derived for all 
values of the parameters. Satisfactory agreement is acquired in the comparison of approximate analytical solution and numerical 
simulation. 
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——————————      —————————— 

1 INTRODUCTION            
      biosensor is an analytical device which uses a living 

organism or biological molecules, especially enzymes or 
antibodies, to detect the presence of chemicals. Enzymes are 
the most common bio-recognition components of biosensors. 
Many obstacles still lie in the way of the widespread 
commercialization of biosensor system.     

 Attempts have been made to get around the problem with 
enzyme-inhibition based systems [1]. Electrochemical 
biosensors have also been held back by the need for 
diffusional electron transfer mediators. These are low 
molecular weight molecules that can diffuse rapidly between 
the enzyme redox site and the electrode surface. In the original 
Clarke-type electrode, oxygen acted as the mediator [2]. An 
amperometric peroxide biosensor was prepared by 
electrochemical deposition of horseradish peroxidase (HRP) 
on a Pt disc electrode modified with polyaniline (PANI) film 
doped with polyvinyl sulphonate (PVS) [3]. This paper 
investigates a model biosensor system which consists of two 
enzymes namely glucose oxidase and horseradish peroxidase.  

 Glucose serves as the base of a series of enzymatic 
experiments. A generalized glucose enzyme electrode would  
Therefore consist of essential three layers: the outer diffusion 
limiting membrane, in contact with the bulk solution 
containing the analyze of interest ;the immobilized enzyme  
layer, within which substrate is depleted and product is 
formed; and the inner selective membrane in contact with the 
electrode [4]. Both the glucose oxidase and the horseradish 
peroxidase are stable enzymes. Glucose oxidase enzyme is 
an oxidoreductase   that  catalysis  the oxidation of glucose to 
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 hydrogen peroxide. Glucose oxidase is widely used for the 
determination of free glucose in body fluids, vegetal raw 
material, and in the food industry. The peroxidase-glucose 
oxidase enzyme system involves a coupled reaction with 
glucose oxidase and peroxidase. Horseradish peroxidase is a 
heme-linked oxidase that catalysis the oxidation of various 
substrates with hydrogen peroxidase. One of the most basic 
enzymatic reactions was proposed more than a century ago by 
Michaelis and Menten. These substrates are produced at 
different rates and are subjected to different diffusion 
processes. To our knowledge no rigorous analyticalsolutions 
have been devised for first complex, second complex, second 
substrate (hydrogen peroxide) and final enzyme product for 
all values of parameters. 

      In this paper, we put forward the approximate 
analytical expressions for first complex, second complex, 
second substrate (hydrogen peroxide) and final enzyme 
product using Homotopy perturbation method (HPM) 
.Comparative study of the same with numerical simulation is 
shown. 

2    MATHEMATICAL FORMULATION OF THE PROBLEM 
         The mathematical model is based on the existence of 

a diffusion layer and a convection layer, where the glucose 
concentration is maintained constant. The immobilized 
enzymes form a monolayer, so all reactions can be assumed to 
undergo, at the lower boundary of the diffusion domain. The 
equations are one-dimensional, where the variable x measures 
the distance from the electrode. These reactions are modeled 
by a standard Michaelis-Menten kinetics scheme which are 
given below [5] 
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where ( )tE1 = first enzyme (glucose oxidase) concentration, 
( )tE2 =second enzyme (horseradish peroxidase) concentration, 
( )txS ,1 = first substrate (glucose), ( )txS ,2 = second substrate 

(hydrogen peroxide), ( )tC1 = first complex, ( )tC2 = second 
complex, ( )txP , = final product, the differential equations 
governing the behavior of the relevant chemical substrates, 
glucose and hydrogen peroxide are as follows.  
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with the boundary conditions, 
0,0),(,),( 201 ≥== ttLSStLS                  (5)       

The following boundary conditions hold on 0=x  
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The following equations describe the kinetics of the 
enzyme-substrate reactions, according to the Michaelis-
Menten scheme, taking place at the electrode.  
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where 1D and 2D  are diffusion constants of glucose and 
hydrogen peroxide, L  is the depth of the diffusion layer, 

314321 ,,,,, −− kkkkkk are reaction rate constants,  ξ  is the ratio of 
glucose oxidase to horseradish peroxidase on the electrode, e 
is the total amount of enzyme present on the electrode, oS  is 
the initial glucose concentration and ( ) LxifSxS oo ==  and 0 
otherwise. In order to obtain an analytical expression for the 
dependence of the optimal enzyme ratio on the system 
parameters, the following simplified model which focuses on 
the kinetic surface processes, while neglecting the movement 
of chemical species to and from the electrode is considered. 
With the assumption that the concentration of glucose is 

maintained constant at the reaction point, ( ) oStS =1 for all 
0≥t the above mathematical model now reduces to the 

following set of ordinary differential equation [6]. 
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with the initial conditions ( ) ( ) ( ) 0000 221 === SCC            (18) 
The final product ( )txP ,  can be calculated from the equation  

24Ck
dt
dP

=                                                                                      (19)                                      

with the initial condition ( ) 00 =P                                             (20)   
 
  

3   SOLUTION OF THE NON-LINEAR DIFFERENTIAL 
EQUATIONS USING THE HOMOTOPY PERTURBATION 
METHOD 
 

            Linear and non-linear phenomena are of 
fundamental importance in various fields of science and 
engineering. Most models of real – life problems are still very 
difficult to solve. Therefore, approximate analytical solutions 
using Homotopy perturbation method (HPM) [7-18] was 
introduced. This method is the most effective and convenient 
ones for both linear and non-linear equations. Perturbation 
method is based on assuming a small parameter. The majority 
of non-linear problems, especially those having strong non-
linearity, have no small parameters at all and the approximate 
solutions obtained by the perturbation methods, in most cases, 
are valid only for small values of the small parameter. 
Generally, the perturbation solutions are uniformly valid as 
long as a scientific system parameter is small. However, we 
cannot rely fully on the approximations, because there is no 
criterion on which the small parameter should exists. Thus, it 
is essential to check the validity of the approximations 
numerically and/or experimentally. To overcome these 
difficulties, HPM have been proposed recently. 

           Recently, many authors have applied the Homotopy 
perturbation method (HPM) to solve the non-linear boundary 
value problem in physics and engineering sciences [16-19]. 
This method is also used to solve some of the non-linear 
problem in physical sciences [11-23]. This method is a 
combination of Homotopy in topology and classic 
perturbation techniques. Ji-Huan He used the HPM to solve 
the Lighthill equation [11], the Diffusion equation [12] and the 
Blasius equation [13-14]. The HPM is unique in its 
applicability, accuracy and efficiency. The HPM uses the 
imbedding parameter p as a small parameter, and only a few 
iterations are needed to search for an asymptotic solution. 
Using this method, we can obtain the approximate analytical 
solutions to (15)-(20) as follows: 
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4    NUMERICAL SIMULATION 
         The non-linear differential equations (15)-(20) are 

also solved numerically. We have used the function main in 
Matlab/Scilab software to solve the initial-boundary value 
problems for the non-linear differential equations numerically. 
This numerical solution is compared with our analytical 
results in Fig. 1- 5. Upon comparison, it gives a satisfactory 
agreement for all values of the parameters ξ,,, 431 kkk and oS . 
The Matlab/Scilab program is also given in Appendix C. 

5   RESULTS AND DISCUSSIONS  
             The equations. (21)-(27) represent the simple 

analytical expressions pertaining to the first complex ( ),1 tC  
second complex ( ),2 tC  second substrate ( )tS2  and the final 
product ( )tP  respectively. The main variables of interest in this 
study are initial glucose concentration oS , the ratio of glucose 

oxidase to horseradish peroxidase on the electrode ξ  and the 
reaction rate constants 431 and, kkk . In fig.1(a)-1(c) first 
complex ( )tC1  versus time t for various values of the initial 
glucose concentration 0S , the ratio of the glucose oxidase and 
horseradish peroxide on the electrode ξ  and reaction rate 
constant 1k  is presented. From these figures, it is confirmed 
that the first complex ( )tC1  increases when initial glucose 
concentration ,oS the ratio of glucose oxidase to horseradish 
peroxidase on the electrode ξ  and the reaction rate constants 

1k .increases with respect to time t.   
  In fig. 2(a)-2(e) second complex ( )tC2  versus time t for 

various values of the   initial glucose concentration ,0S the 
ratio of the glucose oxidase and horseradish peroxide on the 
electrode ξ and reaction rate constants  431 ,, kkk is plotted. 
From fig .2(a)-2(d) we conclude that the second complex ( )tC2  
increases when the initial glucose concentration ,oS the ratio of 
the glucose oxidase and horseradish peroxidase on the 
electrode ξ and  the reaction  rate constan ts ,1k 3k  increases 
with respect to time t.  Fig. 2(e) shows that the second complex 

( )tC2  increases when the reaction rate constant 4k decreases 
with respect to time t.  In fig. 3(a)-3(d), second substrate ( )tS2  
versus time t for various values of the parameters is presented. 
From fig.3(a) -3(b) we conclude that  second substrate ( )tS2  
increases as the initial glucose concentration oS  and the ratio 
of the glucose oxidase and horseradish peroxide on the 
electrodeξ  increases with respect to time t. .From Fig.3(c)  it is 
inferred that second substrate ( )tS2 increases as the reaction 
rate constant 1k .increases. Fig.3(d) illustrates that second 
substrate ( )tS2  increases as the reaction rate constant 3k
decreases.  

     Fig. 4(a) and 4(b) depict the analytical and numerical 
profiles of first complex ( )tC1  second complex ( )tC2   and 
second substrate ( )tS2  versus time t . The graph is plotted for  
(21)-(23). The obtained analytical results are verified. In 
fig.5(a)-5(d) final product ( )tP  versus time t for various values 
of the initial glucose concentration 0S , the ratio of the glucose 
oxidase and horseradish peroxide on the electrode ξ and 
reaction rate constants 41, kk  is presented. From these figures 
it is observed that final product ( )tP  increases as the initial 
glucose concentration ,oS  the ratio of the glucose oxidase and 
horseradish peroxide on the electrode ξ  and reaction rate 
constant 1k and 4k . In fig.6(a)-6(d) the time evolution of dtdP  
(the rate of formation of final product) on the electrode 
(obtained after approximately 40s) is plotted using (19) for 
various values of the dimensionless parameters. 

6  CONCLUSION 
         The time dependent non-linear differential equations 

for the electrochemical enzyme biosensor can be solved 
analytically and numerically. The approximate analytical 
expression of the first complex, second complex, second 
substrate and final product has been derived using the 
Homotopy perturbation method. These analytical results can 
be used to analyze the efficiency of electron transfer to the 
enzyme active site from the conducting  
polymer surface, which is affected by the random orientation 
of enzyme on the surface, probably making much of the 
immobilized material completely inactive. The Homotopy 
perturbation method is not only an extremely simple method 
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but also a promising method to solve the strongly non-linear 
reaction-diffusion equations. Our results are compared with 
the numerical simulation and it gives satisfactory agreement 
.This analytical result helps us for the better understanding of 
the model. 

APPENDIX: A 

BASIC CONCEPTS OF THE HOMOTOPY PERTURBATION 
METHOD   

To explain this method, let us consider the following 
function: 

   r      ,0)()( Ω∈=− rfuDo                                                        (A.1)                                                         

with the boundary conditions of 

   r            ,0) ,( Γ∈=
∂
∂
n
uuBo                                                       (A.2)                                             

where oD  is a general differential operator, oB  is a 
boundary operator, )(rf  is a known analytical function and 

 Γ  is the boundary of the domain Ω . In general, the operator 
oD  can be divided into a linear part L  and a non-linear part

N .  (A.1) can therefore be written as 
 0)()()( =−+ rfuNuL                                                                (A.3) 

    By the Homotopy technique, we construct a Homotopy 
ℜ→×Ω ]1,0[:),( prv  that satisfies 

  .0)]()([)]()()[1(),( 0 =−+−−= rfvDpuLvLppvH o   (A.4)                                   

  .0)]()([)()()(),( 00 =−++−= rfvNpupLuLvLpvH           (A.5)                                             

where p∈ [0, 1] is an embedding parameter, and 0u   is an 
initial approximation of (A.1) that satisfies the boundary 
conditions. From (A.4) and (A.5) we have 

  0)()()0,( 0 =−= uLvLvH                                                         (A.6) 

0)()()1,( =−= rfvDvH o                                                           (A.7)  

 When p=0, (A.4) and (A.5) become linear equations. When 
p=1, they become non-linear equations. The process of 
changing p from zero to unity is that of 0)()( 0 =− uLvL to 

0)()( =− rfvDo . We first use the embedding parameter p  as a 
small parameter and assume that the solutions of . (A.4) and 
(A.5) can be written as a power series in p : 
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2

10 +++= vppvvv                                                            (A.8)                                                                            

Setting 1=p results in the approximate solution of (A.1): 

...lim 210
1

+++==
→

vvvvu
p

                                                      (A.9)                                                              

This is the basic idea of the HPM. 
 
APPENDIX: B 

SOLUTION OF THE NONLINEAR DIFFERENTIAL 
EQUATIONS (16) AND (17) USING THE HOMOTOPY 
PERTURBATION METHOD 

        In this appendix, we derive the approximate 
analytical solution of (16) and (17) using  Homotopy 
perturbation method.  
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        Comparing the coefficients of like powers of  p , we 
can obtain the following differential equations : 

0: 205
200 =− Ca

dt
dC

p                                                                  (B.7)                                                                     

0: 203
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dt
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dt
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( ) 0: 202121212120422716233
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dt
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The initial approximations are as follows: 

( ) ( ) 00,00 2020 == SC                                                                (B.14)                                                    

( ) ( ) .....3,2,1for00,00 22 === iSC ii                                           (B.15)                                                      

Solving  (B.7)-(B.13) and using the initial approximations 
(B.14) and (B.15), we get the following results: 
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  According to the HPM, we can conclude that  
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                                   (B.25)                                                      

Substituting  (B.16) - (B.18) in (B.24) and (B.19) – (B.23) in. 
(B.25), we obtain the solutions (22) and (23) in the text. 

APPENDIX: C 

MATLAB/SCILAB PROGRAM TO FIND THE NUMERICAL 
SOLUTION OF THE NONLINEAR DIFFERENTIAL EQNS. (15)-
(20) 

 
function  
main 
options= odeset('RelTol',1e-6,'Stats','on');  
%initial conditions  
xo = [0;0;0];  
tspan = [0 1];  
tic  
[t,x] = ode45 (@TestFunction, tspan,x0,options);  
toc  
figure  
hold on  
plot(t, x(:,1))  
plot(t, x(:,2))  
plot(t, x(:,3))  
plot(t, x(:,4))  
legend('x1','x2','x3', 'x4')  
y label('x')  
x label('t')  
return  
function [dx_dt]= TestFunction(t,x)  
k1=15; 
So=1; 
k-1 =0.1;  
k2=1; 
k3=5; 
zeta=1; 
e=2; 
k-3=0.1; 
k4=15; 

     dx_dt(1)= -((k1*So+k-1+k2))*x(1)+((So*zeta*e*k1)/(1+zeta)); 
dx_dt(2) =(e*k3/(1+zeta))*x(3)-k3*x(3)*x(2)-( k-3+k4)*x(2); 
dx_dt(3) =k2*x(1)+k-3*x(2)- 
e*k3/(1+zeta))*x(3)+k3*x(3)*x(2); 
dx_dt(4)=k4*x(2); 
dx_dt = dx_dt';  
return 

 

 
 
 

(B.23) 
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APPENDIX D: 

NOMENCLATURE 
 
SYMBOL MEANING 

L  Diffusion layer depth(m) 

1D  Diffusion constants (m2/s) (Glucose)  

2D  Diffusion constants (m2/s) (Hydrogen 
peroxide) 

31, kk  Reaction rate constants (m3/mol.s) 

3142 ,,, −− kkkk  Reaction rate constants(s-1) 

0S  Initial glucose concentration(mol/m3) 
ξ  The ratio of glucose oxidase to 

horseradish peroxidase on the electrode 
e  The total amount of enzyme present 

on the electrode(mol/m2) 
)(1 tE  First enzyme(glucose oxidase 

concentration) 
)(2 tE  Second enzyme (horseradish 

peroxidase ) concentration 
( )txS ,1  First substrate (glucose) 
( )txS ,2  Second substrate (hydrogen 

peroxide) 
( )tC1  First complex 
( )tC2  Second complex 

( )txP ,  Final product 
 
 

 
 
Fig.1(a): First complex ( )tC1  versus time t using  (21) for 

various values initial glucose concentration oS .The solid lines 
(—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 

 
 

 

 
      
Fig.1(b): First complex ( )tC1  versus time t using (21) for 

various values of the ratio of glucose oxidase to horseradish 
peroxidase on the electrode ξ . The solid lines (—) represent 
analytical solution and dotted lines (∙∙∙∙) represent numerical 
simulation. 

 
 

 
 
Fig.1(c): First complex ( )tC1 versus time t using (21) for 

various values of the reaction rate constants The solid lines 
 (—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 
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Fig. 2(a): Second complex ( )tC2  versus time t using (22) 

for various values initial glucose concentration 0S . The solid 
lines (—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 

 
 

 
 
Fig. 2(b):  Second complex ( )tC2  versus time t using (22) 

for various values of the ration of the glucose oxidase and 
horseradish peroxide on the electrode ξ . The solid lines (—) 
represent analytical solution and dotted lines (∙∙∙∙) represent 
numerical simulation. 

 
 
 
 
 
 
 

 
 
Fig. 2(c): Second complex ( )tC2  versus time t using (22) 

for various values of the  reaction rate constants 1k . The solid 
lines (—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 

 
 

 
 
Fig.2(d): Second complex ( )tC2  versus time t using (22)for 

various values of the  reaction rate constants 3k . The solid 
lines (—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 
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 Fig. 2(e): Second complex ( )tC2  versus time t using (22) 

for various values of the  reaction rate constants 4k .The solid 
lines (—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 

 
 
 

 
 
  
Fig. 3(a): Second substrate ( )tS2  versus time t using (23) 

for various values initial glucose concentration 0S .The solid 
lines (—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 

 
 
 
 
 
 

 
 
  
Fig. 3(b): Second substrate ( )tS2  versus time t using (23) 

for various values of the ratio of glucose oxidase to 
horseradish peroxidase on the electrode ξ . The solid lines (—) 
represent analytical solution and dotted lines (∙∙∙∙) represent 
numerical simulation. 

 
 

 
 
 
Fig.3(c): Second substrate ( )tS2  versus time t using (23) 

for various values reaction rate constants 1k . The solid lines (—
) represent analytical solution and dotted lines (∙∙∙∙) represent 
numerical simulation. 
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Fig. 3(d): Second substrate ( )tS2  versus time t using (23) 

for various values reaction rate constants 3k . The solid lines 
(—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 

 
 
 

 
 
 
Fig.4(a): First complex ( )tC1 , Second complex ( )tC2   and 

Second substrate ( )tS2  versus time t using. (21), (22) and (23). 
The solid lines (—) represent analytical solution and dotted 
lines (∙∙∙∙) represent numerical simulation. 

 
 
 
 
 
 
 
 

 

 
Fig. 4(b): First complex ( )tC1 , Second complex ( )tC2   and 

Second substrate ( )tS2  versus Time t  using  (21), (22) and (23). 
The solid lines (—) represent analytical solution and dotted 
lines (∙∙∙∙) represent numerical simulation. 

 
 
 

 
 
Fig. 5(a): Final product ( )tP  versus time t using   (24) for 

various values initial glucose concentration 0S  . The solid lines 
(—) represent analytical solution and dotted lines (∙∙∙∙) 
represent numerical simulation. 
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Fig. 5(b):  Final product ( )tP  versus time t using  (24) for 

various values of the ratio of glucose oxidase to horseradish 
peroxidase on the electrode ξ  . . The solid lines (—) represent 
analytical solution and dotted lines (∙∙∙∙) represent numerical 
simulation. 

 
 

 

 
 
Fig. 5(c): Final product ( )tP  versus time t using  (24) for 
various values reaction rate constants 1k  . The solid lines (—) 
represent analytical solution and dotted lines (∙∙∙∙) represent 
numerical simulation. 

 
   
 
 
 
 
 
 

 
 
Fig. 5(d):Final product ( )tP  versus time t using   (24) for 

various values reaction rate constants 4k .. The solid lines (—) 
represent analytical solution and dotted lines (∙∙∙∙) represent 
numerical simulation. 

 
 
 
 

 
 
Fig. 6(a): The time revolution dtdP  versus time t using  

(19) for various values of reaction rate constants  .1k  
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Fig.6(b): The time revolution dtdP  versus time t using  

(19) for various values  of initial glucose concentration 0S . 
 

 

 

 
 
 
 
Fig. 6(c): The time revolution dtdP  versus time t using 

(19) for various values of the ratio of glucose oxidase to 
horseradish peroxidase on the electrode ξ .   

 
 
 

 

 

Fig.6(d): The time revolution dtdP  versus time t using. 
(19)  for various values of the  reaction rate constant .4k  
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