
International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 106
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A Novel Method To Construct Deterministic Finite
Automata From AGiven Regular Grammar

K.Senthil Kumar1 D.Malathi2
Abstract—Membership checking is an important task in language formalism. In regular Language ,Deterministic Finite Automata plays
membership checking in a convenient way. Regular language is normally represented by regular expression from which people are finding
Deterministic Finite Automata through Non Deterministic Finite Automata. In this paper we have proposed a second degree polynomial
algorithm to find the Deterministic Finite Automata for a given Regular grammar.This paper describes a novel method which finds Deter-
ministic Finite Automata directly from a given regular grammar without going through NFA .We extend the idea of GOTO and CLOSURE
functions in LR parsing model to Regular grammars and use the same to find the states of the required Deterministic Finite Automata. Also
we have proposed a new algorithm which minimizes the number of states of the obtained Deterministic Finite Automata.

—————————— ——————————

1 INTRODUCTION

1K.Senthil Kumar, Assistant Professor, is with the Department of Computer Science and Engineering, S.R.M University, Tamil Nadu, Pin : 603203, India.(phone:+919840860221; E-mail:

senthilkumar.k@ktr.srmuniv.ac.in)

2Corresponding Author :D.Malathi, Professor, is with the Departmentof Computer Science and Engineering,S.R.M University, TamilNadu,
Pin:603203, India. (phone: +919442554055; E-mail:malathi.d@ktr.srmuniv.ac.in, mala_kam@yahoo.com)

Regular language and finite automata plays a crucial role in
pattern matching. Regular expression is used to specify certain
pattern of interest and Non deterministic automata and De-
terministic automata are the models to recognize the pattern.
Deterministic Finite Automata plays a vital role in lexical
analysis phase of compiler design, Control Flow graph in
software testing, Machine learning[2] etc.

In the literature various methods are available for construct-
ing Deterministic Finite Automata (DFA) like subset construc-
tion method which finds DFA from Non Deterministic Finite
Automata (NFA).Using Thomson method we can find DFA
from given regular expression through an ε-NFA.In this paper
we have proposed a novel method to find Deterministic Finite
Automata directly from a given Regular grammar. This paper
is organized as follows. Section 2 deals with notations and
preliminaries, Section 3 discusses related works, Section 4 and
its subsection deals with our proposed algorithm and Section
5 deals with minimization of the obtained Deterministic Finite
Automata and finally conclusion is given.

2. NOTATIONS AND PRELIMINARIES

 We assume the basics in automata theory as contained in
[8].Throughout this paper,∑ denotes input alphabet (finite set
of symbols).Let∑*= i α,β,γ represent words and mod(w)
represent the length of the word. A special word ε is used to
denote empty word, whose length is assumed to be 0.Also a
language L over ∑is defined as L⊆∑*.A Deterministic Finite
Automata is a five tuple which is defined [8] as a quintu-
pleA=(Q, ∑,δ,q0,F), where

• Q - Finite set of states

• ∑ - Finite input alphabet

• δ :QX∑Q the transition function

• q0 - Initial state

• F⊆ Q - Final states

A Non Deterministic Finite Automata is also a five tuple ex-
cept in transition function δ which is defined as

δ :QX ∑2Q Where 2Q represents the power set of Q

Regular Language:
1. A language L is regular if there exists an Finite automata

M such that L(M) = L.
2. A language L is regular if there exists a regular expression

r such that L(r) = L.
A regular language is a language for which a Regular

grammar or Regular Expression or NFA or DFA can be con-
structed.

Regular Grammar:
A Grammar G is said to be left linear if its rules are of the

form
ABa(or) Aa
 A Grammar G is said to be Right linear if its rules are of

the form
AaB(or) Aa
A Regular grammar is one which is either left linear or right

linear.(Also Aε is to be added if it contains empty word)

IJSER

http://www.ijser.org/
mailto:senthilkumar.k@ktr.srmuniv.ac.in

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 107
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3. RELATED WORKS IN DFA CONSTRUCTION
AND MINIMIZATION

In the Regular language formalism we know that regular ex-
pression,NFA(with ε),NFA (without ε),DFA are equivalent. Min-
imization of DFA is also an important as it prevents some unnec-
essary computations.Jielan Zhang and ZhongshengQian[4] have
discussed the equivalence between Regular grammar and
DFA.R.McNaughton andYamada [12] have proposed algorithms
which construct DFA for the given regular expression in O(n2)
time and space. AnneBruggemann-Klein [9] showed that the
Glushkov automaton can be constructed in a time quadratic in the
size of the expression. Rajesh Parekh,CodrinNichitiu andVasanth
[2] have described an efficient incremental algorithm for learning
regular grammars from labeled examples and membership que-
ries. Chia-Hsiang Chang [3] presented analgorithm which com-
putes the same NFA in the same asymptotic time θ(m) where m
denotes number of edges as in Berry and Sethi[10] but it im-
proves the auxiliary space to θ(s)where s denotes number of
states of NFA.Myhill-Nerode [14] famous theorem minimizes
DFA. Moore’s algorithm [15] maintains a partition that starts off
separating the accepting states from rejecting states, and repeat-
edly refines the partition until no more refinements can be made.
In minimization also we have the famous J.E.Hopcroft[11] nlogn
minimization algorithm which uses partition refinement tech-
nique. Jean Berstel,Luc and Oliver Carton[13] have proved that
the bound in J.E.Hopcroft algorithm is actually tight by providing
an automata of family of size n=2k for which their algorithm runs
in k2k. Also recently S. Bhargava and G. N. Purohit[5] used graph
grammar rules to construct a minimal DFA from the given regu-
lar expression with a time complexity of O(nlogn).

4. ALGORITHM TO FIND DFA FOR A GIVEN
REGULAR GRAMMAR

In this paper we have considered right linear regular
grammar for which an algorithm is proposed. This algorithm
finds all states and finally the required DFA. GOTO() and
CLOSURE() functions for context free grammar are defined as
in[1] by A. V. Aho etal.We extend this idea to regular lan-
guage. We define GOTO() and CLOSURE() functions for
regular language as follows:

Definition: GOTO(Qi,X) where Qi is a state (set of items) and

X is a grammar and symbol is [AaX.] such that [Aa.X] is
in Qi.

Definition:CLOSURE(Qi) of an item for a regular grammar G

is constructed by the following two rules.
1. Every item Qi is added to CLOSURE(Qi)
2. If there is an item Aa.B in CLOSURE(Qi) and Bx

(a is a terminal;x may be a terminal or x=cM for termi-
nal c and variable M).

Assumptions: We assume the following:
i. The given regular grammar is in right linear form.

ii. The required DFA has only one final state.
iii. It has no epsilon productions(If it has some epsilon pro-

ductions, then we have more than one final state)
iv. The input alphabet contains two elements only.

The following algorithm finds all states of the required
DFA.
4.1Algorithm:

Input : A Regular Grammar G describing language
L(Containing k rules)

//Which we convert it in to an Augmented Grammar G’ by intro-
ducing S’S

//Each rule will have almost 4 characters and G’ will have k+1
rules.

Output : The Deterministic Finite Automata for the
corresponding language L.

Find_statesDFA(G’) // this will find all states of DFA corre-
sponding to the given grammar

{

Initially Q0=CLOSURE(S’.S) is the only state in re-
quired DFA_states and it is unmarked;

While (there is an unmarked state Qin DFA _states)
do

 begin
Mark Q;

 For each a ε ∑ do begin
Q’=GOTO (Q,a)
If Q’ is not in DFA _states then
Add Q’ as an unmarked state to DFA _states;

 GOTO(Q,a)=Q’;
 End

End

}

Also we define a procedure for CLOSURE function for a state
Q which contains some set of items

Compute_CLOSURE(Q)
{
 For each item[Aa.B] belongs to Q
 for each production Bx or BxCεG’
 If B.x or B.xC is not in Q add
 B.x or B.xC to Q

Return(Q);
}

Function GOTO(Q,a terminal)
{
 Let I be the set of items [Ax.B}

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 108
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Such that A.xBεQ
Return CLOSURE(I);

}

4.2 Construction of the DFA

 After finding all the states (items) by the proposed algo-
rithm, we construct the corresponding DFA as follows.

1. Q0 is the initial state and if GOTO(Q0,a)=Qjconstruct an
edge from Q0to Qjwith a where a is a terminal

2. Last state which we obtain from the above algorithm is the
final state.

3. If GOTO(Qi,a) is not available for an input alphabet athen
make an edge from Qi to a state Qd which is known as dead
state with edge value a.

4. Qd will have self loop for all aε∑

4.3Time Complexity Computations

In the algorithm mainly we use three functions.

1. Compute_CLOSURE(Q)

In this computation, we identify all the variables and we
include all those rules in subsequent computation. Hence
it can be done in a second degree polynomial time.

2. GOTO(Q,terminal)

This function also scans all the items of Q to find the
corresponding terminal and then it applies CLOSURE
function. This can also be done in a linear polynomial
time of n(where n 4k+1 where k denotes number of
production rules)

4.4 An illustration
Suppose that the given regular grammar is

 SaS
 SbS
 SaA
 AbB
 Bb

The augmented grammar becomes
S’S
SaS
SbS

 SaA
AbB

 Bb
We calculate initial state Q0 as follows.
Q0=CLOSURE(S’.S)
Therefore

Q0:
 S’.S
 S.aS
 S.bS
 S.aA

 GOTO(Q0,a)= CLOSURE({(Sa.S)(Sa.A)})

 Q1:
 Sa.S

 Sa.A
 S.aS
 S.bS

 S.aA
 A.bB

 GOTO(Q0,b)= CLOSURE(Sb.S)

 Q2:
 Sb.S
 S.aS
 S.bS
 S.aA

GOTO(Q1,a)=CLOSURE({(Sa.S)(Sa.)})
 = Q1

GOTO(Q1,b)=CLOSURE({(Sb.S)
 (Ab.B)})

 Q3: Sb.S
 Ab.B
 S.aS
 S.bS
 S.aA
 B.b

GOTO(Q2,a)=CLOSURE({(Sa.S)
 (Sa.A)})

=Q1
GOTO(Q2,b)=CLOSURE({Sb.S})

=Q2

GOTO(Q3,a)= CLOSURE({(Sa.S)
 (Sa.A)})

= Q1
GOTO(Q3,b)= CLOSURE({(Sb.S)(Bb.)})

Q4:
 Sb.S
 Bb.
 S.aS
 S.bS
 S.aA

GOTO(Q4,a)= CLOSURE({(Sa.S)
 (Sa.A)})

= Q1
GOTO(Q4,b)= CLOSURE(Sb.S)
 =Q2
The required DFA is shown in Fig1.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 109
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Fig 1: Resultant DFA obtained from proposed algorithm

5. MINIMIZATION OF DFA
In this section we have explained the proposed algorithm

which minimizes the Deterministic Finite Automata.(We take
two alphabets only and the result can be generalized to n al-
phabets).
Definition: Two states P and Q are set to be “equivalent” ifGO-

TO(P,a)=GOTO(R,a) for all a ε .

5.1 Theorem
‘Equivalent’ relation is an equivalence relation on Q-the set of
states of the DFA.
Proof:
 Given Q={Q1,Q2,….Qn} the relation ‘Equivalent’ is de-
fined as Qi is equivalent to Qj if and only if GO-
TO(Qi,a)=GOTO(Qj,a) a ∑. Clearly the relation satisfies
1) Reflexive property as

GOTO (Qi,a)= GOTO(Qi,a);Hence
Qiis equivalent to Qi.

2) Symmetric property as

Qiis equivalent to Qjiff
GOTO (Qi,a)=GOTO(Qj,a) a ∑

 Clearly itcan be written as
GOTO (Qj,a)= GOTO(Qi,a) a ∑
This implies Qj is equivalent to Qi

3) Transitivity property is satisfied as

Given: Qiis equivalent to Qj,Qj, is equivalent to Qk to
prove Qi is equivalent to Qk

Qiis equivalent to QjiffGOTO (Qi,a)=GOTO(Qj,a) a ∑
Qjis equivalent to QkiffGOTO(Qj,a)=GOTO(Qk,a) a ∑

Therefore, we infer that Qi is equivalent to Qk. Therefore,if

Q denotes the set of states of the given DFA
i.e.Q={Q1,Q2,…Qn}// we represent states in an ascending or-
der, then we can writeQ= where Ci∩Cj= where each
Ci must contain at least one state and at most two states.If

there are Cn classes then the obtained DFA is already in Min-
imized formCi.

5.2 Minimization Algorithm

We partition the states of DFA as follows. Initially start with
first three states (since in each state with given two input sym-
bols we may get at most two new states). If there is no equiva-
lent states in the initial partition then set C1=Q1 consider next
partition as {Q2,Q3,Q4}.If two states are equivalent they should
be merged. Suppose that Qi,Qi+1,Qi+2 is the partition at a par-
ticular point of time suppose that Qi,Qi+1are equivalent they
should be merged and the next partition is{Qi+2

,Qi+3,Qi+4}.Suppose QiandQi+2are equivalent then the partition
starts from Qi+3

Minimization algorithm:

Input : Given a DFA with ‘n’ states Q1, Q2,….Qn
Output: A Minimized DFA which accepts the same language
Method:
Minimize_DFA(Q[1..n]) // This

contains n states
{
i1;

 l1: while(i<n)

{

 Ji+1;

 while(j<=i+2)

 {

 if(GOTO(Q[i],a)==GOTO(Q[j],a))&&
 (GO-
TO(Q[i],b)== GOTO(Q[j],b))
 {
 merge(Q[i]&Q[j]);
 ij+1;
 goto l1; }

else
jj+1; }}
ii+1; }

If we consider the same example, it can easily be proved that
Q0 and Q2 can be merged and the resulting minimized DFA is
shown below in Fig2.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 110
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Fig2.Minimum DFA

5.3 Time Complexity Computation

 Since each time we consider three states and check the
equivalent states among the partition; if exists then we merge
those states. Then we consider next partition. So if we have n
states we may have n-2 possible partitions. Also merging can
be done almost by a linear polynomial time. Hence total min-
imization can be done by a linear polynomial time of n.

6. CONCLUSION
We have proposed a novel algorithm which finds Determinis-
tic Finite Automata directly from a given regular grammar
without going through Non Deterministic Finite Automata.
Also we can extend this idea to regular expression which can
be converted to regular grammar by a polynomial time of in-
put size n(where n denotes the regular expression length).Also
we have proposed a new algorithm which minimizes the
number of states of the obtained Deterministic Finite Automa-
ta, in which minimization is done with a linear polynomial
time which is superior to the existing algorithms. We have
proved that a Regular grammar can be constructed very easily
from a given regular expression which involves two terminals
only and it can also be extended for k alphabets (terminals).

REFERENCES
[1] Aho A. V., Lam M. S., SethiR. and Ullman J. D., “Compilers:

Principles, Techniques, and Tools,” 2nd Edition, Addison-
Wesley, New York, 2007.

[2] Rajesh Parekh,CodrinNichitiu and VasanthHonovar, “A polyno-
mial Time incremental Algorithm for Regular Grammar Infer-
ence”, in Proceedings of the Third International Colloquium on
Grammar Inference (ICGI-96). Berlin: Springer-Verlag. pp. 238-
249,1996.

[3] Chia-Hsiang Chang, “From Regular Expressions to DFA's Using
Compressed NFA's”, A dissertation submitted in partial fulfill-
ment of the requirements for the degree of Doctor of Philosophy
Computer Science Department –October1992, Courant Institute
of Mathematical Sciences.

[4] Jielan Zhang, ZhongshengQian, “The Equivalent Conversion
between Regular Grammar and Finite Automata”, Journal of
Software Engineering and Applications,Vol. 6 No.1,pp. 33-
37,January 2013.

[5] BhargavaS. and Purohit G. N., “Construction of a Minimal De-
terministic Finite Automaton from a Regular Expression,” Inter-
national Journal of Computer Applications, Vol. 15, No. 4, pp.
16-27,2011.

[6] Stearns R. E. and Hunt H. B., “On the Equivalence and Contain-
ment Problems for Unambiguous Regular Expressions, Regular
Grammars and Finite Automata,” SIAM Journal on Computing,
Vol. 14, No. 3, pp. 598-611,1985.

[7] HopcroftJ. E., MotwaniR. and UllmanJ. D., “Introduction to
Automata Theory, Languages, and Computation,” Addison-
Wesley, New York, 2007.

[8] LaurikariV., “NFAs with Tagged Transitions, Their Conversion
to Deterministic Automata and Application to Regular Expres-
sions”, inProceedings of the 7th International Symposium on
String Processing Information Retrieval, IEEE CS Press, New
York, pp. 181-187, 2000.

[9] BruggemannKleinA., “Regular Expressions into Finite Automa-
ta,” Springer link Lecture notes in Computer Science, Vol.583
pp. 87-98, 1992.

[10] Berry G. and Sethi R., “From Regular Expressions to Determinis-
ticAutomata”, Theoretical Computer Science, Vol. 48 pp. 117-
126, 1986.

[11] Hopcroft and John, “An nlogn algorithm for minimizing states in
a finite automaton”, Theory of Machines and Computations
(Proc. Internat.Sympos.,Technion, Haifa, 1971), New York: Ac-
ademic Press, pp. 189–196, 1971.

[12] McNaughtonR. and Yamada H., “Regular expressions and state
graphs for automata”, IRE Transactions EC 9, pp.39-47, 1960.

[13] Jean Berstel and Lucand Oliver Carton, “On the complexity of
Hopcroft’s state minimization algorithm”, Implementation and
application of automata Lecture notes in Computer science
Springer Link Volume 3317,2005,pp 35-44,Fifth Colloquium on
Mathematics and Computer Science DMTCS Proc. AI, 2008,
351–362, 2005.

[14] Nerode, “Linear automaton transformations”, in Proc. of
theAmerican Mathematical Society 9,pp. 541–544, 1958.

[15] Moore Edward F, “Gedanken-experiments on sequential ma-
chines”, Automata studies, Annals of mathematics studies, no.
34, Princeton, N. J. Princeton University Press, pp. 129–153,
1956.

Senthil Kumar.Kreceived M.Tech in Computer Sci-
ence and Data Processing fromIIT Kharagpur, India,
in 2002, M.Sc Mathematics from IIT Chennai, India in
1993 and B.Sc Mathematics from Madras University,
Chennai, India in 1990. Since 2008, He has been work-
ingas Assistant Professor with the Computer Science
and Engineering Department, SRM University, Chen-

nai.He is currently pursuing the Ph.D. degree in Computer Science and
EngineeringDepartment, SRM University. His research interests include
Theoretical Computer science, Network Security, Artificial Intelligence.
He has participated in various national and international conferences,
symposiums and workshops. Email: senthilkumar.k@ktr.srmuniv.ac.in.

Malathi. D, Ph.D. received A.M.I.E in Electronics and
Communication Engineering degree from The Institu-
tion of Engineers, India, and Calcutta in 1991,and M.E
(CSE) from MadrasUniversity, Chennai, 1998, and
Ph.D. Information & Communicationfrom
AnnaUniversity, Chennai in 2010. She is a Professor,

IJSER

http://www.ijser.org/
mailto:senthilkumar.k@ktr.srmuniv.ac.in

International Journal of Scientific & Engineering Research, Volume 6, Issue 3, March-2015 111
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

School Of Computer Science and Engineering, Faculty of Engineering and
Technology, S.R.MUniversity, Tamil Nadu, India. Her research interests
include Artificial Neural Networks, Image Processing, Pattern Recogni-
tion and Signal Processing. She has guided many B.Tech and M.Tech Pro-
jects, Guiding Ph.D Scholars and published papers in national and inter-
national conferences and journals and attended and organized symposi-
ums and workshops. Email: malathi.d@ktr.srmuniv.ac.in,
mala_kam@yahoo.com

IJSER

http://www.ijser.org/
mailto:mala_kam@yahoo.com

	1 Introduction
	1) Reflexive property as
	2) Symmetric property as
	3) Transitivity property is satisfied as
	Given: Qiis equivalent to Qj,Qj, is equivalent to Qk to prove Qi is equivalent to Qk

