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A Novel Method To Construct Deterministic Finite 
Automata From AGiven Regular Grammar 

K.Senthil Kumar1 D.Malathi2 
Abstract—Membership checking is an important task in language formalism. In regular Language ,Deterministic Finite Automata plays 
membership checking in a convenient way. Regular language is normally represented  by regular expression from which people are finding 
Deterministic Finite Automata through Non Deterministic Finite Automata. In this paper we have proposed a second degree polynomial 
algorithm to find the Deterministic Finite Automata for a given Regular grammar.This paper describes a novel method which finds Deter-
ministic Finite Automata directly from a given regular grammar without going through NFA .We extend the idea of GOTO and CLOSURE 
functions in LR parsing model to Regular grammars and use the same to find the states of the required Deterministic Finite Automata. Also 
we have proposed a new algorithm which minimizes the number of states of the obtained Deterministic Finite Automata. 
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Regular language and finite automata plays a crucial role in 
pattern matching. Regular expression is used to specify certain 
pattern of interest and Non deterministic automata and De-
terministic automata are the models to recognize the pattern.  
Deterministic Finite Automata plays a  vital role in lexical 
analysis phase of compiler design, Control Flow graph in 
software testing, Machine learning[2] etc. 
 

In the literature various methods are available for construct-
ing Deterministic Finite Automata (DFA) like subset construc-
tion method which finds DFA from Non Deterministic Finite 
Automata (NFA).Using Thomson method we can find DFA 
from given regular expression through an ε-NFA.In this paper 
we have proposed a novel method to find Deterministic Finite 
Automata directly from a given Regular grammar. This paper 
is organized as follows. Section 2 deals with notations and 
preliminaries, Section 3 discusses related works, Section 4 and 
its subsection deals with our proposed algorithm and Section 
5 deals with minimization of the obtained Deterministic Finite 
Automata and finally conclusion is given. 

 
2. NOTATIONS AND PRELIMINARIES 

  We assume the basics in automata theory as contained in 
[8].Throughout this paper,∑ denotes input alphabet (finite set 
of symbols).Let∑*= i α,β,γ represent words and mod(w) 
represent the length of the word. A special word ε is used to 
denote empty word, whose length is assumed to be 0.Also a 
language L over ∑is defined as L⊆∑*.A Deterministic Finite 
Automata is a five tuple which is defined [8] as a quintu-
pleA=(Q, ∑,δ,q0,F), where 

• Q  - Finite set of states 

• ∑  - Finite input alphabet 

• δ :QX∑Q the transition function 

• q0  - Initial state 

• F⊆ Q -  Final states 

A Non Deterministic Finite Automata is also a five tuple ex-
cept in transition function δ which is defined as 

δ   :QX ∑2Q Where 2Q represents the power set of Q 
 

Regular Language:  
1. A language L is regular if there exists an Finite automata 

M such that L(M) = L.  
2. A language L is regular if there exists a regular expression 

r such that L(r) = L. 
A regular language is a language for which a Regular 

grammar or Regular Expression or NFA or DFA can be con-
structed. 

 
Regular Grammar:   
A Grammar G is said to be left linear if its rules are of the 

form 
ABa(or) Aa 
     A Grammar G is said to be Right linear if its rules are of 

the form 
AaB(or) Aa 
A Regular grammar is one which is either left linear or right 

linear.(Also Aε is to be added if it contains empty word) 
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3. RELATED WORKS IN DFA CONSTRUCTION 
AND MINIMIZATION 

In the Regular language formalism we know that regular ex-
pression,NFA(with ε),NFA (without ε),DFA are equivalent. Min-
imization of DFA is also an important as it prevents some unnec-
essary computations.Jielan Zhang and ZhongshengQian[4] have 
discussed the equivalence between Regular grammar and 
DFA.R.McNaughton andYamada [12] have proposed algorithms 
which construct DFA for the given regular expression in O(n2) 
time and space. AnneBruggemann-Klein [9] showed that the 
Glushkov automaton can be constructed in a time quadratic in the 
size of the expression. Rajesh Parekh,CodrinNichitiu andVasanth 
[2] have described an efficient incremental algorithm for learning 
regular grammars from labeled examples and membership que-
ries. Chia-Hsiang Chang [3] presented analgorithm which com-
putes the same NFA in the same asymptotic time θ(m) where m 
denotes number of edges as in Berry and Sethi[10] but it im-
proves the auxiliary space to θ(s)where s denotes number of 
states of NFA.Myhill-Nerode [14] famous theorem minimizes 
DFA. Moore’s algorithm [15] maintains a partition that starts off 
separating the accepting states from rejecting states, and repeat-
edly refines the partition until no more refinements can be made. 
In minimization also we have the famous J.E.Hopcroft[11] nlogn 
minimization algorithm which uses partition refinement tech-
nique. Jean Berstel,Luc and Oliver Carton[13] have proved that 
the bound in J.E.Hopcroft algorithm is actually tight by providing 
an automata of family of size n=2k for which their algorithm runs 
in k2k. Also recently S. Bhargava and G. N. Purohit[5] used graph 
grammar rules to construct a minimal DFA from the given regu-
lar expression with a time complexity of O(nlogn). 
 

4.  ALGORITHM TO FIND DFA FOR A GIVEN 
REGULAR GRAMMAR 

In this paper we have considered right linear regular 
grammar for which an algorithm is proposed. This algorithm 
finds all states and finally the required DFA. GOTO( ) and 
CLOSURE( ) functions for context free grammar are defined as 
in[1] by A. V. Aho etal.We extend this idea to regular lan-
guage. We define GOTO( ) and CLOSURE( ) functions for 
regular language as follows: 

 
Definition: GOTO(Qi,X) where Qi is a state (set of items) and 

X is a grammar and symbol is [AaX.] such that [Aa.X]  is 
in Qi. 

 
Definition:CLOSURE(Qi) of an item for a regular grammar G 

is constructed by the following two rules. 
1. Every item Qi is added to CLOSURE(Qi) 
2. If there is an item Aa.B in CLOSURE(Qi) and Bx    

(a is a terminal;x may be a terminal or x=cM for termi-
nal c and variable M). 

Assumptions: We assume the following: 
i. The given regular grammar is in right linear form. 

ii. The required DFA has only one final state. 
iii. It has no epsilon productions(If it has some epsilon pro-

ductions, then we have more than one final state) 
iv. The input alphabet contains two elements only. 

The following algorithm finds all states of the required 
DFA.  
4.1Algorithm: 

Input : A Regular Grammar G describing language 
L(Containing k rules) 

//Which we convert it in to an Augmented Grammar G’ by intro-
ducing S’S 

//Each rule will have almost 4 characters and G’ will have k+1 
rules. 

Output : The Deterministic Finite Automata for the 
corresponding language L. 

Find_statesDFA(G’) // this will find all states of DFA corre-
sponding to the given grammar 

{   
        

Initially Q0=CLOSURE(S’.S) is the only state in re-
quired DFA_states and it is unmarked; 

While (there is an unmarked state Qin DFA _states)  
do 

       begin 
Mark Q; 

                For each a ε ∑ do begin 
Q’=GOTO (Q,a) 
If Q’ is not in DFA _states then 
Add Q’ as an unmarked state to DFA _states; 

    GOTO(Q,a)=Q’; 
    End 

End 

} 

 

 
Also we define a procedure for CLOSURE function for a state 
Q which contains some set of items  
 
Compute_CLOSURE(Q) 
{ 
    For each item[Aa.B] belongs to Q 
 for each production Bx or BxCεG’ 
  If  B.x or B.xC is not in Q add 
  B.x or B.xC to Q 

Return(Q); 
} 

Function GOTO(Q,a terminal) 
{ 
 Let I be the set of items [Ax.B} 
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 Such that A.xBεQ 
Return CLOSURE(I); 

} 
 
4.2 Construction of the DFA 

   After finding all the states (items) by the proposed algo-
rithm, we construct the corresponding DFA as follows. 

1. Q0 is the initial state and if GOTO(Q0,a)=Qjconstruct an 
edge from Q0to Qjwith a where a  is a terminal  

2. Last state which we obtain from the above algorithm is the 
final state. 

3. If GOTO(Qi,a) is not available for an input alphabet  athen 
make an edge from Qi  to a state Qd which is known as dead 
state with edge value a. 

4. Qd will have self loop for all aε∑ 
 

4.3Time Complexity Computations 
 

In the algorithm mainly we use three functions. 

1. Compute_CLOSURE(Q) 

In this computation, we identify all the variables and we 
include all those rules in subsequent computation. Hence 
it can be done in a second degree polynomial time. 

2. GOTO(Q,terminal) 

This function also scans all the items of Q to find the 
corresponding terminal and then it applies CLOSURE 
function. This can also be done in a linear polynomial 
time of n(where n 4k+1  where k denotes number of 
production rules) 

4.4 An illustration 
Suppose that the given regular grammar is  

   SaS 
   SbS 
   SaA 
   AbB 
   Bb 

The augmented grammar becomes 
S’S 
SaS 
SbS 

                      SaA 
AbB 

                      Bb 
We calculate initial state Q0 as follows. 
Q0=CLOSURE(S’.S) 
Therefore 

Q0:   
          S’.S 
          S.aS 
          S.bS 
          S.aA 

              GOTO(Q0,a)= CLOSURE({(Sa.S)(Sa.A)}) 

               Q1:   
                               Sa.S 

                Sa.A 
                S.aS 
                S.bS 

                   S.aA 
            A.bB 

 
             GOTO(Q0,b)= CLOSURE(Sb.S) 

        Q2:  
     Sb.S 
     S.aS 
      S.bS 
    S.aA 

GOTO(Q1,a)=CLOSURE({(Sa.S)(Sa.)}) 
      = Q1 

GOTO(Q1,b)=CLOSURE({(Sb.S) 
                                          (Ab.B)}) 

     Q3: Sb.S 
          Ab.B 
         S.aS 
        S.bS 
      S.aA 
     B.b 

GOTO(Q2,a)=CLOSURE({(Sa.S) 
                                            (Sa.A)}) 

=Q1 
GOTO(Q2,b)=CLOSURE({Sb.S}) 

=Q2 

GOTO(Q3,a)= CLOSURE({(Sa.S) 
                                          (Sa.A)}) 

= Q1 
GOTO(Q3,b)= CLOSURE({(Sb.S)(Bb.)}) 

Q4: 
           Sb.S 
             Bb. 
            S.aS 
            S.bS 
           S.aA 

GOTO(Q4,a)= CLOSURE({(Sa.S) 
                                            (Sa.A)}) 

= Q1 
GOTO(Q4,b)= CLOSURE(Sb.S) 
        =Q2 
The required DFA is shown in Fig1. 
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Fig 1: Resultant DFA obtained from proposed algorithm 

 

5. MINIMIZATION OF DFA 
In this section we have explained the proposed algorithm 

which minimizes the Deterministic Finite Automata.(We take 
two alphabets only and the result can be generalized to n al-
phabets). 
Definition: Two states P and Q are set to be “equivalent” ifGO-

TO(P,a)=GOTO(R,a) for all a ε . 
 

5.1 Theorem 
‘Equivalent’ relation is an equivalence relation on Q-the set of 
states of the DFA. 
Proof: 
            Given Q={Q1,Q2,….Qn} the relation ‘Equivalent’ is de-
fined as Qi is equivalent to Qj if and only if GO-
TO(Qi,a)=GOTO(Qj,a) a ∑. Clearly the relation satisfies 
1) Reflexive property as 

GOTO (Qi,a)= GOTO(Qi,a);Hence 
Qiis equivalent to Qi. 

 
2) Symmetric property as 

Qiis equivalent to Qjiff 
GOTO (Qi,a)=GOTO(Qj,a) a  ∑  

   Clearly itcan be written as 
GOTO (Qj,a)= GOTO(Qi,a) a  ∑ 
This implies Qj is equivalent to Qi 

 
3) Transitivity property is satisfied as 

Given: Qiis equivalent to Qj,Qj, is equivalent to Qk  to 
prove Qi is equivalent to Qk 

Qiis equivalent to QjiffGOTO (Qi,a)=GOTO(Qj,a) a  ∑  
Qjis equivalent to QkiffGOTO(Qj,a)=GOTO(Qk,a) a  ∑ 

 
 
Therefore, we infer that Qi is equivalent to Qk. Therefore,if 

Q denotes the set of states of the given DFA 
i.e.Q={Q1,Q2,…Qn}// we represent states in an ascending or-
der, then we can writeQ=   where Ci∩Cj= where each 
Ci must contain at least one state and at most two states.If 

there are Cn classes then the obtained DFA is already in Min-
imized formCi. 
 

5.2 Minimization Algorithm  

We partition the states of DFA as follows. Initially start with 
first three states (since in each state with given two input sym-
bols we may get at most two new states). If there is no equiva-
lent states in the initial partition then set C1=Q1 consider next 
partition as {Q2,Q3,Q4}.If two states are equivalent they should 
be merged. Suppose that Qi,Qi+1,Qi+2 is the partition at a par-
ticular point of time suppose that Qi,Qi+1are equivalent they 
should be merged and the next partition is{Qi+2 

,Qi+3,Qi+4}.Suppose QiandQi+2are equivalent then the partition 
starts from Qi+3 
 

Minimization algorithm: 

Input   : Given a DFA with ‘n’ states Q1, Q2,….Qn 
Output: A Minimized DFA which accepts the same language 
Method: 
Minimize_DFA(Q[1..n])    // This 

contains  n states   
{  
i1;       

  
 l1:  while(i<n)     

     
{                                                                           

   
          Ji+1;      

   
 while(j<=i+2)      

   
 { 

   if(GOTO(Q[i],a)==GOTO(Q[j],a))&& 
      ( GO-
TO(Q[i],b)== GOTO(Q[j],b))           
   { 
    merge(Q[i]&Q[j]);                                                                                              
   ij+1;                                                                                                             
    goto l1; } 

else 
jj+1;  }} 
ii+1; }     

    
If we consider the same example, it can easily be proved that 
Q0 and Q2 can be merged and the resulting minimized DFA is 
shown below in Fig2. 
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Fig2.Minimum DFA 

5.3 Time Complexity Computation 

   Since each time we consider three states and check the 
equivalent states among the partition; if exists then we merge 
those states. Then we consider next partition. So if we have n 
states we may have n-2 possible partitions. Also merging can 
be done almost by a linear polynomial time. Hence total min-
imization can be done by a linear polynomial time of n. 

 
6. CONCLUSION 
We have proposed a novel algorithm which finds Determinis-
tic Finite Automata directly from a given regular grammar 
without going through Non Deterministic Finite Automata. 
Also we can extend this idea to regular expression which can 
be converted to regular grammar by a polynomial time of in-
put size n(where n denotes the regular expression length).Also 
we have proposed a new algorithm which minimizes the 
number of states of the obtained Deterministic Finite Automa-
ta, in which minimization is done with a linear polynomial 
time which is superior to the existing algorithms. We have 
proved that a Regular grammar can be constructed very easily 
from a given regular expression which involves two terminals 
only and it can also be extended for k alphabets (terminals). 
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