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Abstract—The current paper aims to compute the artificial intelligence for regression in bounded subspaces of Reproducing Kernel 

Hilbert Spaces (RKHS) for the Support Vector Machine (SVM) regression. Both  -insensitive loss function and general 
pL

 loss 
functions are studied. It is shown that the artificial intelligence is finiteness. This, in turn, confirms that the probability for regression 

machines in RKHS subspaces using the 
L  or general 

pL
 loss functions is uniformly converged. Further, the results are verified 

in a new fashion in the case of introducing a bias to the functions in the RKHS. 
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1 Introduction 

The artificial intelligence of real-valued 

functions 
    ,

p

L y f x y f x 
and 

    ,L y f x y f x


 
with f in a 

bounded sphere in a Reproducing Kernel Hilbert 

Space (RKHS), is computed in the current paper. 

Considering these loss functions, it is shown that 

the artificial intelligence is finite and then, an 

upper bound is computed for the dimension. The  

problem is solved by two solutions. A discussion  

on a simple argument, leading to a loose upper 

bound on the artificial intelligence, is introduced, 
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at first, and then, the results from the case of  

infinite dimensional RKHS, which is frequently 

considered in the literature as the type of 

hypothesis spaces [1-16], is refined. The results are 

applied to some standard regression learning 

machines including Regularization Networks (RN) 

and Support Vector Machines (SVM) [17, 18]. 

Moreover, the artificial intelligence is innovatively 

computed in the case of introducing a bias to the 

functions; i.e. when 0f f b 
, where b R  

and 0f
 is in a sphere in an infinite dimensional 

RKHS [19]. 

     It is previously confirmed that when L  is used 

as loss function in a regression learning problem, a 

necessary and sufficient condition for uniform 

convergence in probability is finiteness of the 

artificial intelligence for all 
0 

 [20]. 

Accordingly, the results of the current paper 

confirm the uniform convergence of both RN and 

for SVM regressions [21, 23, 24, and 27]. 

     The problem of patter recognition, with L  

works as an indicator function, was considered in 
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previous related works [21-39]. However, the fat-

shattering dimension [40] was introduced as the 

substitute of the artificial intelligence [41-45]. By 

presenting entropy numbers of operators as cover 

of number arguments, a different approach is 

followed to confirm uniform convergence for RN 

and SVM [46-62]. However, regression as well as 

the case of non-zero bias b  was not 

comprehensively considered in both of them [63-

73]. 

     According to the framework of statistical 

learning theory, the problem of learning from 

examples is taken into account in this study [74]. 

By randomly sampling from a space 

X Y with
dX R ,Y R  a set of  

examples 
    1 1, ,..., ,x y x y

is generated 

[75]. It is based on an unknown probability 

distribution 
 ,P x y

[76]. It is assumed that X 

and Y are bounded [77]. The problem of learning is 

defined as finding a function :f X Y , 

according to a set of examples, through it, the 

value y , corresponded to new point x X , can 

be predicted [78]. 

     It is well-known that the problem of learning 

from examples is ill-posed [79, 80]. Performing 

Empirical Risk Minimization (ERM), using a 

specified loss functions, and with limiting the 

solution to the problem to be in a “small” 

hypothesis space [80] is the tradition solution of 

the problem. The goal of the solution is minimizing 

the empirical risk 

    
1

1
,emp i i

i

I f L y f x


 
with f H , 

where L  is the loss function measuring the error 

as the difference of predicted,
 f x

 and 

actual,
y

 values and H  is a given hypothesis 

space [81]. 

     The hypothesis spaces of functions considered 

in the current study are hyperplanes in some 

feature space: 

   
1

n n

n

f x x 





                                           (1)                                                                             

with: 

2

1

n

n n









 
                                                               (2)                                                                      

where 
 n x

 is a set of given, linearly 

independent basis functions, n  are given non-

negative constants such that 

2

1

n

n






 
. The form 

of functions’ spaces represented in Eq. (1) is similar 

to which is used in Reproducing Kernel Hilbert 

Spaces (RKHS) [81, 82] with kernel K  given by: 

     
1

, n n n

n

K x y x y  





                         (3)                                                                    

Eq. (2) gives the RKHS norm of f ,

2

K
f

 where f  

is defined according to Eq. (1). However, the 

number D  of features n  (if D  is finite, all sums 

above are also finite) is the dimensionality of the 

RKHS [83]. 

     By limiting the hypothesis space so that it 

consists of functions in a RKHS with norm less 

than a constant A , the general setting of above 

mentioned learning becomes: 

  
1

1
: ,i i

i

Minimize L y f x



  

2 2:
K

subject to f A
                                      (4)                                                                           

     The consistency of learning machines defined 

by Eq. (4) is a critical issue. It was found that by 

approaching the number of examples 
 ,i ix y

to 

infinity, the probable error of the solution should 

converge in probability to the minimum expected 

error in the hypothesis space [80, 83]. For learning 

machines performing ERM in a hypothesis space 

Eq. (4), it was shown that consistency is related to 

uniform convergence in probability [84]. In 

addition, depending on the artificial intelligence of 

the considered hypothesis space, which indicates 

the complexity of the space, necessary and 

sufficient conditions for uniform convergence are 

defined [84, 85]. 

     The VC-dimension is typically used in statistical 

learning theory as the measure of complexity. 

However, when RKHS is dimensionally infinite, 
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the VC-dimension also is infinite both for pL
 

and
L , in the above learning setting. As a result, 

the VC-dimension is not applicable to investigate 

learning machines of the form Eq. (4). In this 

regard, another measure of complexity (e.g., the 

artificial intelligence) should be considered to 

demonstrate uniform convergence in infinite 

dimensional RKHS.  

 

2 Results and Discussion 

In the following, it is assumed that data X  are 

within a sphere of radius R  in the feature space 

defined by the kernel K  of the RKHS and 
y

 is 

bounded between 1 and1 . As a result of these 

assumptions, a theorem can be described as 

follows: 

Theorem. The artificial intelligence h  for 

regression, considering pL
 or 

L  as loss 

functions, for hypothesis spaces 

   
2

2

1 1

n
A n n

n n n

H f x x A


 


 

 

  
   
  

 
and 

y
 bounded, is finite for

0 
. If D  is the 

dimensionality of the RKHS, 

then

  2 2

2

1 1
min ,

R A
h O D



   
  

  
   . 

Proof. Considering 1L
 as loss function and B  as 

the upper bound of 1L
, the rules for separating 

points can be decomposed according to the 

following: 

 

 

 

 

1

1

i i

i i

i i

i i

class if y f x s

or f x y s

class if y f x s

or f x y s









  

  

   

  
                         (5)                                                                

for some  
s B   

. It should be noted that, 

despite the number of N  points, the number of 

separations possible to get by rules Eq. (5) cannot 

more than the number of separations possible to 

get by the product of two indicator functions (of 

hyperplanes with margin): 

   

 

   

 

1 1

1 1

2 2

2 2

: class1

class 1

: class1

class 1

i i

i i

i i

i i

function a if y f x s

if y f x s

function b if f x y s

if f x y s









  

   

  

   

                                                                                      (6) 

where 1f
 and 2f

are in AH
,  1s 

, 

2s B  
. Recovering Eq. (5), for 

1 2s s s 
and for 1 2f f f 

, gives the results 

same as to what will be obtained if one follows Eq. 

(5).  For example, if 
 y f x s   

then 

indicator function (a) will result 1  and indicator 

function (b) will result 1 . Hence, their product 

will result 1 , same as Eq. (5). Therefore, it can be 

obviously seen that the number of separations for 

any considered set of points can be considerably 

increased if more freedom give to 1f
, 2f

, 1s
, 2s

 

compared to when Eq. (5) is followed. 

     It is previously mentioned that the number of 

separations, for any N  points, is bounded by the 

growth function. However, it was shown that the 

growth function for products of indicator functions 

is enclosed by the product of the growth functions 

of the indicator functions. Moreover, the indicator 

functions in Eq. (6) are hyperplanes and its margin 

is in the 1D  dimensional space of vectors 

  ,n x y
 where 

2 1R   is the radius of the 

data, the norm of the hyperplane is bounded 

by
2 1A  , (where 1  added in both cases due 

to
y

), and the margin is at least

2

2 1A



 . It was 

previously found that the artificial intelligence 
h  

of these hyperplanes is bounded 

by

 
  2 2

2

1 1
min 1 1,

R A
h D



  
   
 
  . 
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Therefore, whenever
h

, the growth function 

of the separating rules Eq. (5) is bounded 

by

 

h h

e e
g

h h

 

 

   
       
    . Considering 

regh as 

the artificial intelligence, 

regh  is limited to be 

smaller than the larger number  for which 

inequality 

2

h h

e e

h h

 

 

   
       
    holds. In this 

regard, as
5h

, 

therefore

  2 2

2

1 1
5min 2,reg

R A
h D



  
  
 
  . It is 

proved the theorem for the case of 1L
 loss 

functions. 

     By rewriting Eq. (5) as follows, a same proof can 

be achieved for general pL
 loss functions: 

   

   

   

   

1

1

1

1

1

1

p
i i

p
i i

p
i i

p
i i

class if y f x s

or f x y s

class if y f x s

or f x y s









  

  

   

  
                  (7)                                                                                                                                                                             

Moreover, for
1p 

, 

 
1

1
p

ps s
pB


  

 

(since

     
1 1

1 1

sin

p
p

p p
p pce s s s s pB  

                          

) and 

 
1

1
p

ps s
pB


  

 (similarly). Similar to 

above argument, it can be found that the artificial 

intelligence is bounded 

by

    
2 2 2

2

1 1
5min 2,

pB R A
D



  
 
 
  . 

Finally, Eq. (5) can be rewritten as follows for the 

L loss function: 

 

 

 

 

1

1

i i

i i

i i

i i

class if y f x s

or f x y s

class if y f x s

or f x y s

 

 

 

 

   

   

    

   
                 (8)                                                                            

where calling s s    , the above mentioned 

proof can be used to find the upper bound on the 

artificial intelligence same as to that found for the 

1L
 loss function. (It should be noted that if the 

constraint 
s B   

is considered, it seems 

that it would have a little effect on the artificial 

intelligence for
L ).  

     It can be concluded from these results that the 

artificial intelligence is still finite and is influenced 

only by 

  2 2

2

1 1
5

R A



 

when RKHS is 

dimensionally infinite.  

 

3 Conclusions 

A novel approach is introduced in the current 

paper to compute the artificial intelligence of 

RKHS when pL
 and 

L  are considered as loss 

functions. It is found that better bounds can be 

achieved if takes into account in the 

computations when 
L  considered as loss 

function. As an instance, it is clearly proved that 

the artificial intelligence is bounded 

by

 
22 2 2

2

p B R A





, when 

  , 1
p

f x y p


 
considered as the loss 

function. However, it is found that   has a low 

influence (given that B ). Moreover, more 
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general loss functions can be introduced to the 

presented computations. Appearing the 

eigenvalues of the matrix G  in the computation of 

the artificial intelligence is very interested. By 

computing the number of separations for a given 

set of points, similar to that performed for the 

largest and smallest eigenvalues in the proofs, all 

the eigenvalues of G  can be considered. As a 

result of this computation, interesting relations can 

be found. In addition, for obtaining the bounds on 

the generalization performance of regression 

machines of the form Eq. (4), the bounds on the 

artificial intelligence can be effectively used. 
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