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A Compromise Solution in Multivariate Surveys 
with stochastic random cost function 

Sana Iftekhar, Sanam Haseen, Qazi Mazhar Ali and Abdul Bari 
 

Abstract−In this paper a problem of multivariate stratified sampling for non-linear random cost with certain probability has been formulated using 
chance constraint method. Here the formulated problem minimizes the coefficient of variation and determines the best compromise allocation. The 
solution to this formulated problem is calculated via different programming problem viz. lexicographic goal Programming, fuzzy programming, 𝛜-
constraint approach and a comparative study by these methods has been attempted. An empirical study of the problem has been done at the end of the 
paper. 

Index Terms−Multivariate Stratified Sampling, Coefficient of Variation, Compromise allocation, Non-linear cost, Stochastic Programming, 
Lexicographic Goal Programming, Fuzzy Programming, 𝛜-Constraint approach. 

1. Introduction 

ith the advent of compromise allocation in sampling 
surveys where multiple characteristics are under 

study it is well known that Cochran [28] has enlighten with 
the idea of character wise average of the individual 
optimum allocation as a promising compromise allocation 
taking into consideration that all characteristics are equally 
important. 

This problem of obtaining compromise allocation for 
multiple characteristic under study was experimented by 
many researchers. Among them are Dalenius [26 & 27], 
Yates [3], Aoyama [5], Folks and Antle [12], Chatterjee [19 
& 20], Huddleston [6], Chromy [11], Bethel [10], Hartley [7], 
Kokan et al [13], Diaz Garcia and Cortez [8], Khan et. al. [17 
& 18] etc. 

For any population Coeffecient of Variation (CoV) is 
expressed as a relative amount of population standard 
deviation and population mean. According to Ostle [2] 
coefficient of variation is a special implement for 
comparing the variation in two series of data which are 
measured in two different units. 

Dantzig [4] was the first who formulated Stochastic 
Programming Problem (SPP) and suggested a two stage 
programming technique to solve it. Later, another method 

for solving SPP by converting the problem into a 
deterministic non-linear constraint is developed by Charnes 
& Cooper [1] in 1959. 

SPP is a mathematical programming problem that involves 
uncertainty. In SPP the parameters are known or estimated 
to follow some probability distribution. In a broader sense, 
SPP is to find solution that is feasible for all most all the 
possible data simultaneously maximizing objective function 
which includes the random variables. 

Recent work has been done in this field of chance constraint 
are by Diaz-Garcia [9], Javed and Bakshi [24], Bakhshi [30], 
Khan et. al [15] and Ghufran et. al. [21] etc. 

In this paper the problem of finding compromise allocation 
in multivariate sampling in case of random variable with 
normal probability distribution is formulated into non-
linear stochastic programming problem and its equivalent 
deterministic non-linear programming problem.  Problem 
has been solved using different methods. An empirical 
study for comprehensive detail of different methods used is 
also being presented. 

2. Formulation of the Problem 
We consider a multivariate population consisting of 𝑁 units 
which is divided into 𝐿 disjoint strata of sizes 𝑁1,𝑁2, … ,𝑁𝐿  
such that 𝑁 = ∑ 𝑁ℎ𝐿

ℎ=1 . Suppose that 𝑝 characteristics 
(𝑗 = 1,2, … , 𝑝) are measured on each unit of the population. 
We assume that the strata boundaries are fixed in 
advanced. Let 𝑛ℎ units be drawn without replacement from 
the ℎ𝑡ℎ stratum  ℎ = 1,2, … , 𝐿. 

For 𝑗𝑡ℎ character, an unbiased estimate of the population 
mean 𝑌�𝑗  (𝑗 = 1,2, … ,𝑝) denoted by 𝑦�𝑗𝑠𝑡  , has its sampling 
variance  

W 
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   𝑉�𝑦�𝑗𝑠𝑡� = ��
1
𝑛ℎ

−
1
𝑁ℎ
�𝑊ℎ

2𝑆𝑗ℎ2
𝐿

ℎ=1

,           𝑗 = 1,2, … , 𝑝              (1) 

   

where 𝑊ℎ = 𝑁ℎ
𝑁

 is the stratum weight and 

𝑆𝑗ℎ2 = 1
𝑁ℎ−1

∑ �𝑦𝑗ℎ𝑖 − 𝑌�𝑗ℎ  �
2𝑁𝑖

𝑖=1  is the variance for the 𝑗𝑡ℎ 

characteristic in the ℎ𝑡ℎ stratum. Let 𝐶 be the upper limit on 
the total cost of the survey. The problem of optimal sample 
allocation involves determining the sample sizes 
𝑛1,𝑛2, … ,𝑛𝐿 that minimize the variances of various 
characteristics under the given sampling budget𝐶. Within 
any stratum the linear cost function is appropriate when 
the major item of cost is that of taking the measurement on 
each unit. If travel costs between units in a given stratum 
are substantial, empirical and mathematical studies indicate 
that the costs are better represented by the 
expression∑ 𝑡ℎ�𝑛ℎ𝐿

ℎ=1 , where 𝑡ℎ is the travel cost incurred 
in enumerating a sample unit in the ℎ𝑡ℎ stratum. 

Assuming this non-linear cost function one should have 

                      𝐶 = 𝑐0 + �𝑐ℎ

𝐿

ℎ=1

+ �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

                              (2)  

     

where 𝑐ℎ ;ℎ = 1,2, … , 𝐿 denote the per unit cost of 
measurement in the ℎ𝑡ℎ stratum and 𝑐0 is the overhead cost. 

The restrictions 2 ≤ 𝑛ℎ ≤ 𝑁ℎ ;ℎ = 1,2, … , 𝐿 are introduced to 
obtain the estimate of the stratum variances and to avoid 
the problem of oversampling. 

Thus the MONLPP of the above problem can be written as 

     

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒      �
(𝐶𝑜𝑉)12

⋮
(𝐶𝑜𝑉)𝑝2

�                                     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        �𝑐ℎ𝑛ℎ + �𝑡ℎ�𝑛ℎ ≤ 𝐶0

𝐿

ℎ=1

𝐿

ℎ=1

 

𝑎𝑛𝑑                 2 ≤ 𝑛ℎ ≤ 𝑁ℎ ;ℎ = 1,2, … , 𝐿       

  

⎭
⎪⎪
⎬

⎪⎪
⎫

                (3) 

   

where ∑ (𝐶𝑜𝑉)𝑗2
𝑝
𝑗=1 = �

(𝐶𝑜𝑉)12
⋮

(𝐶𝑜𝑉)𝑝2
� and 

(𝐶𝑜𝑉)𝑗 = 𝐶𝑜𝑉�𝑦�𝑗𝑠𝑡�;    𝑗 = 1,2, … , 𝑝 

          =
𝑆𝐷�𝑦�𝑗𝑠𝑡�

𝑌�𝑗
  𝑗 = 1,2, … , 𝑝 

Thus 

(𝐶𝑜𝑉)𝑗2  =  
𝑉�𝑦�𝑗𝑠𝑡�
𝑌�𝑗
2   𝑗 = 1,2, … ,𝑝                                 

                

               = 𝑌�𝑗−2 ��𝑊ℎ
2 �−

𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

�                                  (4) 

Thus, the MONLPP may be restated as  

     

     

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑍   =  𝑌�𝑗−2 ��𝑊ℎ
2 �1 −

𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

�

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜           �𝑐ℎ𝑛ℎ + �𝑡ℎ�𝑛ℎ ≤ 𝐶0

𝐿

ℎ=1

𝐿

ℎ=1
𝑎𝑛𝑑                   2 ≤ 𝑛ℎ ≤ 𝑁ℎ ;ℎ = 1,2, … , 𝐿       

    

⎭
⎪⎪
⎬

⎪⎪
⎫

                      (5) 

   

For realistic situations the measurement cost 𝑐ℎ and the 
travel cost 𝑡ℎ in the various strata are not fixed and may be 
considered as random. Let us assume that 𝑐ℎ and 𝑡ℎ ,ℎ =
1,2, … , 𝐿 are independently normally distributed random 
variables. 

Thus the above problem can be written in the following 
chance constrained programming form as 

     

  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝑍   = 𝑌�𝑗−2 ��𝑊ℎ
2 �1 −

𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

�                   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑃 � �𝑐ℎ𝑛ℎ + �𝑡ℎ�𝑛ℎ ≤ 𝐶0

𝐿

ℎ=1

𝐿

ℎ=1

� ≥ 𝑝0

𝑎𝑛𝑑                   2 ≤ 𝑛ℎ ≤ 𝑁ℎ ;ℎ = 1,2, … , 𝐿                         

   

⎭
⎪⎪
⎬

⎪⎪
⎫

         (6)   

where 𝑝0, 0 ≤ 𝑝0 ≤ 1 is a specified probability. 

3. Formulation of Chance Constraint  

Assuming the costs 𝑐ℎ and 𝑡ℎ ,ℎ = 1,2, … , 𝐿 to be 
independently normally distributed random variables. The 
function �∑ 𝑐ℎ𝑛ℎ +∑ 𝑡ℎ�𝑛ℎ𝐿

ℎ=1
𝐿
ℎ=1 � will also be normally 

distributed with mean 𝐸 �∑ 𝑐ℎ𝑛ℎ +∑ 𝑡ℎ�𝑛ℎ𝐿
ℎ=1

𝐿
ℎ=1 �  and 

variance 𝑉 �∑ 𝑐ℎ𝑛ℎ +∑ 𝑡ℎ�𝑛ℎ𝐿
ℎ=1

𝐿
ℎ=1 �. 

If 𝑐ℎ~𝑁�𝜇𝑐ℎ ,𝜎𝑐ℎ
2 � and 𝑡ℎ~𝑁�𝜇𝑡ℎ ,𝜎𝑡ℎ

2 � , then the mean of the 
function   �∑ 𝑐ℎ𝑛ℎ +∑ 𝑡ℎ�𝑛ℎ𝐿

ℎ=1
𝐿
ℎ=1 � is obtained as 
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 𝐸 ��𝑐ℎ𝑛ℎ + �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

� = 𝐸 ��𝑐ℎ𝑛ℎ

𝐿

ℎ=1

� + 𝐸��𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

�

= �𝑛ℎ𝐸(𝑐ℎ) + ��𝑛ℎ𝐸(𝑡ℎ)
𝐿

ℎ=1

𝐿

ℎ=1

                      = �𝑛ℎ

𝐿

ℎ=1

𝜇𝑐ℎ + ��𝑛ℎ

𝐿

ℎ=1

𝜇𝑡ℎ                          (7)                 

   

 

      And the variance is obtained as 

 𝑉 ��𝑐ℎ𝑛ℎ + �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

� = 𝑉 ��𝑐ℎ𝑛ℎ

𝐿

ℎ=1

� + 𝑉 ��𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

� 

                                              = �𝑛ℎ2𝑉(𝑐ℎ) + �𝑛ℎ𝑉(𝑡ℎ)
𝐿

ℎ=1

𝐿

ℎ=1

 

                                                          = �𝑛ℎ2
𝐿

ℎ=1

𝜎𝑐ℎ
2 + �𝑛ℎ

𝐿

ℎ=1

𝜎𝑡ℎ                  
2 (8) 

Now let 𝑓(𝑘) =   �∑ 𝑐ℎ𝑛ℎ + ∑ 𝑡ℎ�𝑛ℎ𝐿
ℎ=1

𝐿
ℎ=1 � , then the chance 

constraint in (8) is given by 

𝑃(𝑓(𝑘) ≤ 𝐶) ≥ 𝑝0 

means   𝑃

⎩
⎨

⎧𝑓(𝑘) − 𝐸�𝑓(𝑘)�

�𝑉�𝑓(𝑘)�
≤
𝐶 − 𝐸�𝑓(𝑘)�

�𝑉�𝑓(𝑘)� ⎭
⎬

⎫
  ≥   𝑝0, 

where �𝑓(𝑘)−𝐸�𝑓(𝑘)�

�𝑉�𝑓(𝑘)�
�is a standard normal variate with zero 

mean and variance one. Thus the probability of realizing  
[𝑓(𝑘)] less than or equal to 𝐶 can be written as 

                𝑃(𝑓(𝑘) ≤ 𝐶) = ∅

⎣
⎢
⎢
⎡𝐶 − 𝐸�𝑓(𝑘)�

�𝑉�𝑓(𝑘)� ⎦
⎥
⎥
⎤
,                      (9) 

 

Where ∅(𝑧) cumulative density function of the standard 
normal variable evaluated at 𝑧. If 𝐾𝛼 represent the value of 
the standard normal variate at which  ∅(𝐾𝛼 ) = 𝑝0, then the 
constraint can be written as  

                    ∅

⎣
⎢
⎢
⎡𝐶 − 𝐸�𝑓(𝑘)�

�𝑉�𝑓(𝑘)� ⎦
⎥
⎥
⎤
≥ ∅(𝐾𝛼  )                          (10) 

The inequality will be satisfied only if  

          ∅

⎣
⎢
⎢
⎡𝐶 − 𝐸�𝑓(𝑘)�

�𝑉�𝑓(𝑘)� ⎦
⎥
⎥
⎤
≥ 𝐾𝛼 ,                                  (11) 

or equivalently, 

      𝐸�𝑓(𝑘)� + 𝐾𝛼�𝑉�𝑓(𝑘)�  ≤  𝐶                            (12) 

Substituting from (7) and (8) in (12), we get 

�    �𝑛ℎ

𝐿

ℎ=1

𝜇𝑐ℎ + ��𝑛ℎ

𝐿

ℎ=1

𝜇𝑡ℎ�+ 𝐾𝛼��𝑛ℎ
2

𝐿

ℎ=1

𝜎𝑐ℎ2 + �𝑛ℎ

𝐿

ℎ=1

𝜎𝑡ℎ
2  ≤ 𝐶 

The constants 𝜇𝑐ℎ ,  𝜇𝑡ℎ, 𝜎𝑐ℎ and 𝜎𝑡ℎ  in (13) are unknown (by 
hypothesis). So we will use the estimator of mean  
𝐸 �∑ 𝑐ℎ𝑛ℎ + ∑ 𝑡ℎ�𝑛ℎ𝐿

ℎ=1
𝐿
ℎ=1 � and variance 𝑉�∑ 𝑐ℎ𝑛ℎ +𝐿

ℎ=1

∑ 𝑡ℎ�𝑛ℎ𝐿
ℎ=1 � is given below 

𝐸� �∑ 𝑐ℎ𝑛ℎ + ∑ 𝑡ℎ�𝑛ℎ𝐿
ℎ=1

𝐿
ℎ=1 � = ∑ 𝑛ℎ𝑐ℎ̅ + ∑ �𝑛ℎ𝐿

ℎ=1
𝐿
ℎ=1 𝑡ℎ̅ , say          

                                                                           (14) 

𝑉�  �∑ 𝑐ℎ𝑛ℎ + ∑ 𝑡ℎ�𝑛ℎ𝐿
ℎ=1

𝐿
ℎ=1 � = ∑ 𝑛ℎ2𝜎𝑐ℎ2 + ∑ 𝑛ℎ𝐿

ℎ=1
𝐿
ℎ=1 𝜎𝑡ℎ2 , say                            

                                                             (15) 

where 𝑐ℎ̅, 𝑡ℎ̅, 𝜎𝑐ℎ2  and 𝜎𝑡ℎ2  are the estimated means and the 
variances from the sample. 

Thus an equivalent deterministic constraint to the 
stochastic constraint is given by 

 �   �𝑛ℎ𝑐ℎ̅ + ��𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

𝑡ℎ̅ � + 𝐾𝛼��𝑛ℎ2𝜎𝑐ℎ2 + �𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

𝜎𝑡ℎ2 ≤ 𝐶            (16)   

Now the problem of allocation in multivariate stratified 
sample surveys with 𝑝-independent characteristics is 
formulated as a MOINLPP. The 𝑝 objectives are to 
minimize the individual variances of the estimates of the 
population means of 𝑝-characteristics simultaneously, 
subject to the non-linear probabilistic cost constraint. 

The formulated MOINLPP is given as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑍  �
(𝐶𝑜𝑉)12

⋮
(𝐶𝑜𝑉)𝑝2

�                                                                                                     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝐸�  ��𝑐ℎ𝑛ℎ + �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

� + 𝐾𝛼�𝑉�  ��𝑐ℎ𝑛ℎ + �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

�  ≤ 𝐶

2 ≤ 𝑛ℎ ≤ 𝑁ℎ                                                                              
𝑎𝑛𝑑       𝑛ℎ 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;    ℎ = 1,2, … , 𝐿                                                                        

 

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (17) 
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To solve the problem (17) using stochastic programming, 
we first solve the following 𝑝 non-linear programming 
problems for all the 𝑝 characteristics separately. The 
equivalent deterministic non-linear programming problem 
to the stochastic programming problem is given by 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍   =  (𝐶𝑜𝑉)𝑗 =   𝑌�𝑗−2 ��𝑊ℎ
2 �1 −

𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

�                                   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜   ��𝑐ℎ̅𝑛ℎ + �𝑡ℎ̅�𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

� + 𝐾𝛼� ��𝜎𝑐ℎ
2 𝑛ℎ

2 + �𝜎𝑡ℎ
2 𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

�  ≤ 𝐶

2 ≤ 𝑛ℎ ≤ 𝑁ℎ
𝑎𝑛𝑑            𝑛ℎ 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;     𝑗 = 1,2, …𝑝;            ℎ = 1,2, … ,𝐿                         ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

   (18) 

4. Solution of the problem using different methods 

The MOINLPP (18) can be solved using different methods 
for finding compromise allocations at different context. 

4.1 Lexicographic goal programming 
Lexicographic goal programming (Díaz-García and 
Cortez [8]) requires complete information to find solution 
of hierarchical order arranged according to the 
importance of the variances. If there are p variances of 
the estimates 𝑦𝑗ℎ(𝑤) of  𝑌𝑗 arranged in order of their 
importance and that (𝑉1,𝑉2, . . ,𝑉𝑛) is the arrangement in 
lexicographic order of importance that is first 
characteristic is the most important one while the 𝑝𝑡ℎ   is 
the least important. 
 At the first stage of the solution the following 
MOINLPP (18) for 𝑗 = 1 has been obtained. Let (𝐶𝑜𝑉)1∗be 
the optimal value of the objective function (𝐶𝑜𝑉)1 and 
𝑑1 ≥ 0 is such that(𝐶𝑜𝑉)1 −  (𝐶𝑜𝑉)1∗  ≤  𝑑1. 

 At the second stage of the solution the INLPP  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑌2
−2
��𝑊ℎ

2 �1 −
𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

� + 𝑑1                            

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑌 ��𝑊ℎ
2 �1 −

𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

� −  𝑑1  ≤     (𝐶𝑜𝑉)1∗      

                               

      ��𝑐ℎ𝑛ℎ

𝐿

ℎ=1

+  �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

�+ 𝐾𝛼���𝜎𝑐ℎ2 𝑛ℎ2
𝐿

ℎ=1

+ �𝜎𝑐ℎ2 𝑛ℎ

𝐿

ℎ=1

� ≤ 𝐶

𝑑1 ≥ 0 ;     𝑗 = 1,2, …𝑝,                                                                       
 2 ≤ 𝑛ℎ ≤ 𝑁ℎ                                                                     

𝑎𝑛𝑑         𝑛ℎ 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;          ℎ = 1,2, … ,𝐿.                                                       ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

  (19) 

is obtained. 

 Similarly at the last stage (𝑝𝑡ℎ  𝑠𝑡𝑎𝑔𝑒) of the 
solution the INLPP to be solved would be 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑌𝑝
−2
��𝑊ℎ

2 �1 −
𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

�+ �𝑑𝑝

𝑝

𝑗=1

                            

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑌 ��𝑊ℎ
2 �1 −

𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

� −  𝑑𝑗  ≤     (𝐶𝑜𝑉)𝑗∗         

                               

 ��𝑐ℎ𝑛ℎ

𝐿

ℎ=1

+  �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

�+ 𝐾𝛼���𝜎𝑐ℎ
2 𝑛ℎ

2
𝐿

ℎ=1

+ �𝜎𝑐ℎ
2 𝑛ℎ

𝐿

ℎ=1

� ≤ 𝐶

𝑑𝑗 ≥ 0 ;     𝑗 = 1,2, … 𝑝,                                                                       
 2 ≤ 𝑛ℎ ≤ 𝑁ℎ                                                                     

𝑎𝑛𝑑    𝑛ℎ  𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;          ℎ = 1,2, … ,𝐿.                                                     ⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

 (20) 

where 𝑑𝑗 ≥ 0; 𝑗 = 1,2, … ,𝑝 − 1 are goals variables whose 
values are to be determined such that the total increase in 
the coefficient of variation is minimized and (𝐶𝑜𝑉)𝑗∗ denote 
the variance under individual optimal allocation for 𝑗𝑡ℎ 
characteristic, 𝑗 = 1,2, … , 𝑝. 

It is to be noted that between (19) and (20) there are (𝑝− 3) 
more stages. 

4.2 Fuzzy Programming 
When the optimal solution is not a crisp solution, instead a 
compromise solution is required for the problem. The 
problem is required to be formulated into a fuzzy 
programming problem (Haseen et. al [23]).  
It has already been considered in section 4.1 that (𝐶𝑜𝑉)𝑗∗ be 
the optimal value of (𝐶𝑜𝑉)𝑗 obtained by solving the 
MOINLPP (18). 
Further let  

           𝐶𝑜𝑉� 𝑗 = 𝐶𝑜𝑉� 𝑗(𝑛1,𝑛2, … ,𝑛ℎ , … ,𝑛𝐿)                       (21) 

denote the value of the coefficient of variation under the 
compromise allocation, where 𝑛ℎ ;ℎ = 1, 2, … , 𝐿 are to be 
worked out. 

 Obviously 𝐶𝑜𝑉� 𝑗 ≥ 𝐶𝑜𝑉𝑗∗ and 𝐶𝑜𝑉� 𝑗 − 𝐶𝑜𝑉𝑗∗ ≥ 0; 𝑗 =
1, 2, … ,𝑝 will give the increase in the variance due to not 
using the individual optimum allocation for 𝑗𝑡ℎ 
characteristic.  

To obtain a fuzzy solution, we first compute the maximum 
value 𝑈𝑘 and the minimum value 𝐿𝑘, for each 𝑘 = 1, 2, … , 𝑝. 

Now, 
𝐿𝑘 = min

𝑗
𝑍𝑘 �𝑛ℎ,𝑗

∗ �                        𝑈𝑘 = max
𝑗

𝑍𝑘(𝑛ℎ,𝑗
∗ ) 

where 𝑛ℎ,𝑗
∗  denote the optimum allocation for the 𝑗𝑡ℎ 

characteristic in four strata. 
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The differences of the maximum and minimum values of 𝑍𝑘 
are denoted by 𝑑𝑘 = 𝑈𝑘 − 𝐿𝑘 , 𝑘 = 1, 2, … , 𝑝. 

 The fuzzy programming formulation of the MOINLPP in 
(18) is given by the following INLPP: 

Minimize   𝛿                                                                                                                        

subject to   𝑌𝑘
−2
��𝑊ℎ

2 �1 −
𝑛ℎ
𝑁ℎ
�
𝑆𝑗ℎ2

𝑛ℎ

𝐿

ℎ=1

� − 𝛿𝑑𝑘 ≤ 𝐶𝑜𝑉𝑘∗                                          

              ��𝑐ℎ𝑛ℎ

𝐿

ℎ=1

+  �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

�+ 𝐾𝛼���𝜎𝑐ℎ
2 𝑛ℎ

2
𝐿

ℎ=1

+ �𝜎𝑐ℎ
2 𝑛ℎ

𝐿

ℎ=1

� ≤ 𝐶  

2 ≤ 𝑛ℎ ≤ 𝑁ℎ                                                                        
𝑎𝑛𝑑        𝑛ℎ 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;          𝑘 = 1,2, … 𝑝;   ℎ = 1,2, … ,𝐿.                     

 

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 (22) 

where δ ≥ 0 is the decision variable representing the worst 
deviation level. 

The fuzzy programming may be solved using the 
optimization software LINGO-13 [14]. 

4.3 The 𝛜 - Constraint Approach 

The ϵ-constraint method was introduced by Haimes et.al 
[29]. It was used when partial information about the 
characteristics is available. In their method they selected 
one objective and set added all other objectives into 
constraints after setting an upper bound to each of them. 
This method only needs to identify the most important 
characteristic for obtaining the compromise allocation.  

 Under this approach we express the problem for 
obtaining the integer compromise allocation as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝐶𝑜𝑉)𝑘2                                                                                                        
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 (𝐶𝑜𝑉)𝑗2 ≤ (𝐶𝑜𝑉)𝑗∗2                                                                                  

 �� 𝑐ℎ𝑛ℎ

𝐿

ℎ=1

+ �𝑡ℎ�𝑛ℎ

𝐿

ℎ=1

� + 𝐾𝛼���𝜎𝑐ℎ2 𝑛ℎ2
𝐿

ℎ=1

+ �𝜎𝑐ℎ2 𝑛ℎ

𝐿

ℎ=1

� ≤ 𝐶

               2 ≤ 𝑛ℎ ≤ 𝑁ℎ                                                                        
𝑎𝑛𝑑      𝑛ℎ 𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠;          𝑗 = 1,2, … 𝑝, ℎ = 1,2, … , 𝐿.                   ⎭

⎪⎪
⎪
⎬

⎪⎪
⎪
⎫

        (23) 

where the 𝑘𝑡ℎ characteristic, k ∈ {1, 2, …, p}, is assumed to 
be most important and (𝐶𝑜𝑉)𝑗∗2 is a predetermined bound 
for the p-1 remaining coefficients of variation j=1,2, …, p; j ≠ 
k. 

It is to be noted that the choice of 𝑘𝑡ℎ characteristic and the 
lower limits (𝐶𝑜𝑉)𝑗∗2 represent the evaluator’s subjective 
preferences, and so if there were no solution to the (23), this 
would mean that at least one of the limits of (𝐶𝑜𝑉)𝑗2 had 
been set too low and must be revised. For further 
information one can refer to Ríos, et. al. [25]. 

5. A Numerical Example 

To implement it practically, we use the data are obtained 
from the 2002 Agriculture Censuses in Iowa State 
conducted by National Agricultural Statistics Service, 
USDA, Washington DC. The 99 counties in Iowa are 
divided into four strata. Two characteristic are defined, first 
one is the quantity of corn harvested X1  and second the 
quantity of oats harvested X2  are given below 

Table 1: Data for four strata and two characteristics 
ℎ 𝑁ℎ  𝑊ℎ 𝑆1ℎ2  𝑆1ℎ2  
1 8 0.0808 21601503189.8 1154134.2 
2 34 0.3434 19734615816.7 7056074.8 
3 45 0.4545 27129658750.0 2082871.3 
4 12 0.1212 17258237358.5 732004.9 

Also X�1 and X�2 are assumed to be known as X�1=474973.90 
and X�2=1576.25. 

The data has been taken from Ghufran et. al.[22] and Kozok 
[16]. 

It is of course untrue in real survey. In practice some 
approximations of these parameters are used; they can be 
known from a recent or preliminary survey (Kozak (2006)). 

The total amounts available for the survey is C0 = C −
c0=200 units, where c0=50 units is the expected over cost, 
and C=250 units is the total budget of the survey.  

In this problem c1, c2, c3, c4, t1, t2, t3, t4 are 
independently normally distributed random variables with 
assumed means and standard deviations which are given 
below: 

𝐸(𝑐1) = 15,𝐸(𝑐2) = 7, 𝐸(𝑐3) = 5, 𝐸(𝑐4) = 9, 

 𝐸(𝑡1) = 10,𝐸(𝑡2) = 5, 𝐸(𝑡3) = 2,𝐸(𝑡4) = 6  

𝑉(𝑐1) = 3.75, 𝑉(𝑐2) = 1.75,𝑉(𝑐3) = 1.25,𝑉(𝑐4) = 2.25, 

 𝑉(𝑡1) = 2.5,𝑉(𝑡2) = 1.25,𝑉(𝑡3) = 0.5,𝑉(𝑡4) = 1.5  

Using the values given in table 1, the MOINLPP 20 and 
their optimal solutions 𝑛ℎ,𝑗

∗ , 𝑗 = 1, 2;   h = 1, 2, 3, 4 with the 
corresponding values of (𝐶𝑜𝑉)𝑗∗ are given below. These 
values are being obtained by using software LINGO-13 
[14]. 

For 𝑗 = 1 the optimum allocation is 𝑛1,1
∗ =  2, 𝑛1,2

∗ = 5 ,
𝑛1,3
∗ =  9, 𝑛1,4

∗ =  2, the corresponding individual objective 
value is (𝐶𝑜𝑉)1∗ = 0.00467051 
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For 𝑗 = 2 the optimum allocation is 𝑛2,1
∗ =  2, 𝑛2,2

∗ = 7 ,
𝑛2,3
∗ =  6, 𝑛2,4

∗ = 2 , the corresponding individual objective 
value is (𝐶𝑜𝑉)2∗ = 0.0659471 

6. Discussion 

Table 3 and 4 gives a comprehensive detail of the optimum 
compromise allocations and their objective values using 
different methods in different context when the costs are 
considered to be independent and normally distributed. 
For instance, we can see through the table that the 
coefficient of variation and optimal compromise allocation 
found using Lexicographic programming is the best of all 
the results found by other methods. But Lexicographic goal 
programming is used when complete information about the 
data is available on the other hand when we have only 
partial information about the data we can use the ϵ-
constraint Approach to find the best compromise 
allocations. The problem has also been solved using fuzzy 
programming that has an optimum compromise allocation 
but with greater value of coefficient of variation.  

Table 2: Compromise allocation obtained by different 
methods 

Compromise 
Allocation 

Lexicographic 
Programming 

Fuzzy 
Programming 

ϵ-constraint 
Approach 

delta = 
0.5625201 

priority 
𝑗 = 1 

priority 
𝑗 = 2 

𝑛1 2 2 2 2 
𝑛2 7 6 7 5 
𝑛3 6 7 6 9 
𝑛4 2 2 2 2 

Total 17 17 17 18 

Table 3: Corresponding value of the objective function 

Coefficient 
of 

Variation 

Lexicographic 
Programming 

Fuzzy 
Programming 

ϵ-constraint 
Approach 

priority 
𝑗 = 1 

priority 
𝑗 = 2 

𝐶𝑜𝑉1 0.005461061 0.005115211 0.00546
1061 

0.004670
51 

𝐶𝑜𝑉2 0.0659471 0.06979772 0.06594
71 

0.075463
46 

Total 0.071408161 0.074912931 0.07140
8161 

0.080133
97 
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