International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1468

ISSN 2229-5518

On Intuitionistic Fuzzy R-Ideals of Semi ring

Ragavan.C1, Solairaju.A2 and Kaviyarasu.M3

1, 3Asst Prof. Department of Mathematics, Sri Vidya Mandir Arts & Science College, Uthangarai, T.N. India

2 Associate Professor of Mathematics Jamal Mohamed College, Trichy, T.N, India.



1e-mail:ragavanshana@gmail.com, 2solairama@yahoo.co.in, 3anjjukavi@gmail.com

Abstract

In this paper, we introduce the notion of intuitionistic fuzzy ideal and intuitionistic fuzzy R-ideal in semi
ring and investigate some properties of intuitionistic fuzzy R-ideals of semiring.

1. Introduction:

The concept of fuzzy set μ of a set X was introduced by L. A. Zadch [9] as a function from X in [0, 1]. The concept of fuzzy ideals in a ring was introduced by W. L. Liu [8]. T. K. Dutta and B. K. Biwa’s [3, 4] studied
fuzzy ideals, fuzzy prime ideals of semi rings and they defined fuzzy R-ideals and fuzzy prime R-ideals of semi rings. Y. B. Jun, J. Naggers and M. S. Kim [5] extended the concept of an L-fuzzy left (resp. right) ideals of a ring to a semi ring. The concept of the idea of intuitionistic fuzzy set was first published by K. T. Atanassov [1, 2], as a generalization of the notion of fuzzy set. K.H. Kim and J. G. Lee [6] studied the intuitionistic Fuzzifications of the concept of several ideals in a semi groups and investigate some properties of such ideals. K. H. Kim [7] introduced the notion of intuitionistic Q-fuzzy semiprimality in a semi group and investigates some properties of intuitionistic Q-Fuzzifications of the concept of several ideals. In this paper we introduce the notion of intuitionistic fuzzy R-ideal of semi ring and investigate some properties of intuitionistic fuzzy R-ideal of semi rings. Throughout this paper R is a semiring.

2. Preliminaries:

Let (R, +, ·) be a smearing. By a left (right) ideal of R we mean a non-empty subset A of R such that A + A ⊆ A and RA ⊆ A (AR ⊆ A). By ideal, we mean a non-empty subset of R which both left and right ideal of R. A left ideal A of R is said to be a left R-ideal if t ∈ A, x ∈ R and if t + x ∈ A or x + t ∈ A then x ∈ A. Right R-ideal
is defined dually, and two sided R-ideal or simply a R-ideal is both a left and a right R-ideal. By a fuzzy set μ of a
non-empty set R we mean a function μ: R→ [0, 1], and the complement of μ , denoted by 𝜇 , is the fuzzy set in R
given by 𝜇 (x)=1- μ (x), for all x∈R. A fuzzy set μ in R is called fuzzy left (resp. right) ideal of R if for any x, y
∈ R, μ(x+y)≥ min{μ(x),μ(y)} and μ (xy) ≥ μ (y) ( μ (xy) ≥ μ (x)) and μ is called fuzzy ideal if μ both fuzzy left
and right ideal of R. A fuzzy ideal μ of R is called R-fuzzy ideal of R if for any x,y∈R,

μ(x)≥ min{max{μ((x+z)+(z+y)),μ((z+x)+(y+z))}, μ (y)}. A intuitionistic fuzzy set (IFS for short) A in a non-

empty set R is an object have the form: A = {(x:µA (x), λA (x)) / x ∈ R} Where the function μA : R→[0, 1] and λA
: R→[0, 1] denoted the degree of membership and the degree of non-membership, respectively, and 0 ≤ μA (x) +

λA (x) ≤1 An intuitionistic fuzzy set A = {(x : μA (x), λA (x)) / x ∈ R} in R can be identified to ordered pair

(μA,λA) in IR x IR. We shall use the symbol A = (µA, λA) for the IFS: A = {(x: μA (x), λA (x)) / x∈R}

3. Intuitionistic fuzzy R-ideal:

Definition 3.1: An IFS A = (μA, λA) in R is called an intuitionistic fuzzy left (resp. right) ideal of R

1- μA (x+y) ≥ min{μA (x), μA (y)} and μA (xy) ≥ μA (y) (resp. μA (xy) ≥ μA (x)).
2- λA (x+y) ≤ max{λA (x), λA (y)} and λA (xy) ≤ λA (y) (resp. λA (xy) ≥ λA (x)). For all x, y ∈R:

Definition 3.2: An intuitionistic fuzzy ideal A= (μA, λA) of R is called an intuitionistic fuzzy R- ideal of R if

1. μA (xy) ≥ μA (y) , μA (xy) ≥ μA (x). 2 μA (x) ≥min {max {μA ((x+z) + (z+y)), μA ((z+x) +(y+z))}, μA(y)} and

3. λA (xy) ≤ λA (y), λA (xy) ≥ λA (x)). 4 λA (x) ≤max{min{λA((x+z)+(z+y)),λA((z+x)+(y+z))}, λA (y)}.∀ x,

y∈R.

Theorem 3.3: Let A = (μA, λA) an intuitionistic fuzzy set in R such that μA is fuzzy R-ideal of R then

d A = (μA, 𝜇R A ) is an intuitionistic R-ideal of R.

Proof: Let x, y∈R, since μA is a fuzzy R-ideal of R ⇒ μA is a fuzzy ideal.

So μA (x+y) ≥ min {μA (x), μA (y)} and μA (xy) ≥ μA (y), μA (xy) ≥ μA (x),



μ A (x+y) =1-μA (x+y) ≤1-min {μA (x), μA (y)} =max {1-μA (x), 1-μA (y)} = max { μ A (x), μ A (y)}


μ A (x + y) ≤ max { μ A (x), μ A (y)},



μ A (xy) = 1 – μA (xy) ≤ 1 - μA (y) = μ A (y), also μA (xy) ≤ μA (x)

Therefore dA = (μA, μ A ) is an intuitionistic fuzzy ideal of R.
Let μA (x) ≥min {max {μA ((x+z) + (z+y)), μA ((z+x) +(y+z))}, μA (y)}
𝜇 (x)=1 - μ (x) ≥min {max {μA ((x+z) + (z+y)), μA ((z+x) +(y+z))}, μA (y)},

IJSER © 2014 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1469

ISSN 2229-5518


μ A (x) =max {1- max {μA ((x+z) + (z+y)), μA ((z+x) +(y+z))}, μA (y)}, 1-μA (y)}
= max {min {1- μA((x+z)+(z+y)),1-μA((z+x)+(y+z))},1- μA (y)}



=max {min { μ A ((x+z) + (z+y)), μ A ((z+x)+(y+z))}, μ A (y)}

Ragavan.C1, Solairaju.A2 and Kaviyarasu.M3






so μ A (x)≤max {min { μ A ((x+z) + (z+y)), μ A ((z+x)+(y+z))}, μ A (y)}∴ dA = (μA, μ A ) is an intuitionistic R-ideal

Theorem 3.4: An IFS A = (μA, λA) is an intuitionistic fuzzy R-ideal of R if and only if the fuzzy sets μA and

λ A are fuzzy R-ideals of R.

Proof: Suppose that an IFS A = (μA, λA) is an intuitionistic fuzzy R-ideal of R. Clearly μA is a fuzzy R-ideal. Let x, y ∈ R. Since A = (μA, λA) is an is an intuitionistic fuzzy R-ideal.

λA(x + y) ≤ max {λA (x), λA (y)} and λA (xy) λA (y), λA (xy) λA(x)

λA (x) ≤ max {min {λA ((x+z) + (z+y)), λA ((z+x) +(y+z))}, λA (y)}
λRA (x + y) = 1 - λA (x + y) ≥ 1 – max {λA (x), λA (y)} = min {λRA (x), λRA (y)} So λRA (x + y) ≥ min {λRA (x), λRA (y)}
λRA (xy) = 1- λA (xy) ≥ 1 - λA (y) = λRA (y),
λRA (xy) ≥ λA (x) ≥ 1 – max λRA (y). Also we can get that λRA (xy) ≥ λRA (x).
λ� RA (x) = 1 − λA (x)
≥ 1 – max {min {λA ((x+z) + (z+y)), λA ((z+x) +(y+z))},λA (y)}
= max {1 – min {λA ((x+z) + (z+y)), λA ((z+x) +(y+z))}, 1 - λA (y)}
= min {max {1-λA ((x+z) + (z+y)), 1- λA ((z+x) +(y+z))}, λ� RA (y)}
= min {max {λ� RA ((x+z) + (z+y)), λ� RA ((z+x) +(y+z))},λ� RA (y)}

So λ� RA (x) ≥ min {max {λ� RA ((x+z) + (z+y)), λ� RA ((z+x) +(y+z))}, λ� RA (y)}
Therefore λ� RA fuzzy R-ideals of R. suppose that μA and λ A are fuzzy R-ideals of R
Let x, y ∈ R. Since μA is a fuzzy R-ideals of R.

μA (x +y) ≥ min {μA (x), μA(y)}

μA (x y) ≥ min {μA (x), μA(y)} and μA(x y) ≥ μA (y), μA (xy) ≥ μA (x)

μA (x) ≥ min {max {μA ((x+z)+(z+y)), μA ((z+x)+(y+z))},μA(y)}


λA(x + y) = 1 – λRA (x + y). Since λRA is a fuzzy ideal of R we get that
λA(x + y) = 1 – min { λ A (x), λRA (y) } = max {1-λRA (x), 1-λRA (y)} = max {λRA (x), 1-λRA (y)}
So λRA (x + y) ≤ max {λRA (x), λRA (y)} Also we get that λA (xy) ≤ λA(y), λA (xy) ≤ λA(x)
λA (x) =1− λRA(x) Since λA is a fuzzy R-ideals of R we get that
λA(x) ≤ 1 – min {max { λRA ((x+z) + (z+y)), λRA ((z+x) + (y+z))}, λRA (y)}
= max {1 - max { λRA ((x+z) + (z+y)), λRA ((z+x) + (y+z))}, 1-λRA (y)}
= max {min { 𝟏 − λRA ((x+z) + (z+y)), 1- λRA ((z+x) +(y+z))}, λRA (y)}
= max {min {λRA ((x+z) + (z+y)), λRA ((z+x)+(y+z))}, λRA (y)}
So λRA (x) ≤ max {min {λRA ((x+z) + (z+y)), λRA ((z+x) +(y+z))}, λRA (y)}
Therefore= (μA, λA) is an is an intuitionistic fuzzy R-ideal
Theorem 3.7: An IFS A = (μA, λA) is an intuitionistic fuzzy R-ideal of R iff for any t ∈ [a, b] such that (μA)t ≠ Φ
and (λA)t ≠ Φ. (μA)t and (λA)t are R-ideal of R, where (μA)t ={x ∈ R / μA(x) ≥ t}.
Proof: Suppose that IFS A = (μA, λA) is an intuitionistic fuzzy R-ideal of R So by theorem (2.3) μA and λRA are
fuzzy R-ideal of R ⇒ μA and λA are fuzzy ideal of R By [4] for any t ∈ [0, 1] such that (μA)t ≠ Φ and (λA)t ≠ Φ
(μA)t and (λA)t are ideal of R. Let x ∈ (μA)t and y ∈ R and ((x +z)+(z+ y))∈ (μA)t or ((z + x)+(y+z))∈ (μA)t .
μA(x) ≥ t and μA((x +z)+(z+ y))≥ t or μA ((z + x)+(y+z))≥t . ⇒ max {μA ((x +z)+(z+ y)), μA((z + x)+(y+z))}
≥ t. Since μA is fuzzy R-ideal of RμA (y) ≥ mini {max {μA ((x +z)+(z+ y)), μA((z + x)+(y+z))}, μA(x)} ≥ t⇒μA(y)
≥ t so y ∈ (μA )t. Therefore (μA)t is R-ideal of R.Similarly we can prove that ( λA)t is R-ideal of R.Suppose that
for any t∈[0, 1] such (μA)t ≠ Φ and (λA)t ≠ Φ, (μA)t and (λA)t are R-ideal of R.So (μA )t and (λA)t are ideal of
R.By [4] μA and λA are fuzzy ideal of R.Let x, y ∈ R and μA(y) = r 1 , μA((x +z)+(z+ y))=r 2 , μA((z +
x)+(y+z))=r 3 , (ri ∈ [0, 1])Let t= min{max{r 1 , r 3 }, r 1 }⇒ y ∈ (μA)t and ((x +z)+(z+ y)) ∈ (μA)t or ((z +

x)+(y+z))∈ (μA)t Since (μ A )t is R-ideal of R.So x ∈ (μ A )t⇒ μ A (x)≥ t, μ A (x)≥ min{max{μ A ((x +z)+(z+ y)),μ A ((z +

x)+(y+z))},μA(y)}Therefore μA is fuzzy R-ideal of R.Similarly we can prove that λA is fuzzy R-ideal of R.By
theorem (2.5) we get that A=(μA, λA) is an intuitionistic fuzzy R-ideal of R.Recall a function f from a semi-ring R
into semi-ring T homomorphism if f (x + y) = f (x) + f (y) and f (xy) = f(x) f(y) for any x,y∈ R Let f be a function

IJSER © 2014 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1470

ISSN 2229-5518

from a set X into a set Y respectively, then the image of A under f, denoted by f(A) and the preimage of B under f, denoted by f-1(B), are IFSs in X and Y respectively and defined by f (A) = (f (μA), f(λA)), f-1(B)=(f-1 (μB ), f-1 (λB ))

Theorem 3.9: Let f: R→T be onto homomorphism of semi rings. If B= (μB , λB ) is an intuitionistic fuzzy R-ideal

of T then the preimage f-1(B) = (f-1(μB ), f-1(λB )) of B under f is an intuitionistic fuzzy R-ideal of R.
Proof:1- let x, y ∈ R. f-1(μB ) (x + y) = μB (f (x + y) = μB (f (x) + f(y))
≥ min {μB (f(x)), μB (f(y))} =min {f-1(μB ) (x), f-1(μB ) (y)}.
So f-1(μB ) (x + y) ≥ min {f-1 (μB ) (x), f-1 (μB ) (y)}

On Intuitionistic Fuzzy R-Ideals

f-1 (μB ) (xy) = μB (f (xy)) = μB (f(x) f(y))
μB (f(y)) = f-1 (μB ) (y).
So f-1 (μB ) (xy) ≥ f-1 (μB ) (y).Also f-1 (μB ) (xy) ≥ f-1 (μB ) (x),
f-1 (λB ) (x+y) = λB (f(x+y)) = λB (f(x) +f(y))
≤ max {λB (f(x)), λB (f(y))}
= max { f-1 (λB ) (x), f-1 (λB )(y)} So f-1(λB) (x+y) ≤ max { f-1 ( λB )(x), f-1 (λB )(y)}.
f-1 ( λB ) (xy) = λB (f(xy)) = λB (f(x) f(y))
λB (f(y)) = f-1(λB ) (y).
So f-1B ) (xy) ≥ f-1 B ) (y).Also f-1 (λB ) (xy) ≥ f-1 ( λB ) (x)

2- Let x, y ∈ R⇒ f(x), f(y) ∈ T.

f-1 (μB )(x)≥ μB (f(x)) ≥ min {max {μB (f (x+z) +f (z+y)), μB (f (z+x) + f (y+z))}, μB (f(y))}
= min{max{ f-1 (μB )( (x+z)+(z+y)), f-1 (μB )((z+x)+(y+z))}, f-1 (μB )(y)}
f-1 ( λB )(x)=λB (f(x)) ≤ max {min {λB (f(x+z) +f (z+y)), λB (f (z+x) +f(y+z))}, λB (f(y))}
= max{min{ f-1 ( λB )((x+z)+(z+y)), f-1 (λB )((z+x)+(y+z))}, f-1 (λB )(y)} Therefore f-1 (B) = (f-1 (μB ), f-1 (λB )) is an intuitionistic fuzzy R-ideal of R.

Theorem 5. If μ is a intuitionistic fuzzy R- ideal in semi ring R then µ m

semi ring R.
Proof: For all x, y ∈ R.
is also intuitionistic fuzzy R- ideal in

{μ ( x )}m {min {max {μ

(( x + z ) + ( z + y )) , μ

(( z + x ) + ( y + z ))}, μ

( y )}}

A A A A

μ ( x )m min {max {μ

(( x + z ) + ( z + y )) , μ

(( z + x ) + ( y + z ))}, μ

( y )}m

A A A A

μ m ( x) ≥ min {max {μ

(( x + z ) + ( z + y )) , μ

(( z + x ) + ( y + z ))} , μ

( y )m }

A A A A

min {max {μ

(( x + z ) + ( z + y ))m , μ

(( z + x ) + ( y + z ))m }, μ

( y )m }

A A A

μ m ( x ) min {max {μ m (( x + z ) + ( z + y )), μ m (( z + x ) + ( y + z ))}, μ m ( y )}

A A A A

{λA

( x )}m

{max {min {λA (( x + z ) + ( z + y )), λA (( z + x ) + ( y + z ))}, λA ( y )}}

λ ( x )m ≤ max {min {λ

(( x + z ) + ( z + y )), λ

(( z + x ) + ( y + z ))}, λ

( y )}m

A A A A

λ m ( x ) ≤ max {min {λ

(( x + z ) + ( z + y )), λ

(( z + x ) + ( y + z ))} , λ

( y )m }

A A A A

≤ max {min {λ

(( x + z ) + ( z + y ))m , λ

(( z + x ) + ( y + z ))m }, λ

( y )m }

A A A

λ m ( x ) ≤ max {min {λ m (( x + z ) + ( z + y )), λ m (( z + x ) + ( y + z ))}, λ m ( y )}

Therefore µ m is a fuzzy ideal in semi ring R
Theorem 7: If μA is a fuzzy ideal in semi ring R then µAB is also fuzzy ideal in semi ring R. Proof: For all x, y ∈ R. μA (x+y) ≥ min {μA (x), μA (y)} and μA (xy) ≥ μA (y), μA (xy) ≥ μA (x)

μB (x+y) ≥ min{μB (x), μB (y)} and μB (xy) ≥ μB (y), μB (xy) ≥ μB (x)

IJSER © 2014 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1471

ISSN 2229-5518

min {µ A ( x + y), µB ( x + y)} ≥ min {min {µ A ( x) + µ A ( y )} , min {µB ( x) + µB ( y )}}

min {µ A ( xy), µB ( xy)} ≥ min {µ A (y), µB ( y)}, min {µ A ( xy), µB ( xy)} ≥ min {µ A (x), µB (x)}

µ AB (x + y) ≥ min {min {µ A ( x), µB ( x)} ,{min{µB (x), µB ( y)}} = min {µ AB (x), µ AB (y)}

µ AB (xy) ≥ µ AB (y), µ AB (xy) ≥ µ AB (x).

Theorem 8.If μA is a fuzzy R- ideal in semi ring R then µAB is also fuzzy R- ideal in semi ring R.

Proof: For all x, y ∈ R. ∀x, y∈R. Now,

µ A (x) ≥ min {max {µ A (( x + z ) + (z+ y)), µ A ((z+ x) + (y+ z ))}, µ A (y)}

µ B (x) ≥ min {max {µ B (( x + z ) + (z+ y)), µ B ((z+ x) + (y+ z ))}, µ B (y)}

min{µ A (x), µ B (x)} ≥ min {min {max {µ A (( x + z) + (z+ y)), µ A ((z+ x) + (y+ z))}, µ A (y)},

min {max {µ B (( x + z) + (z+ y)), µ B ((z+ x) + (y+ z))}, µ B (y)}}

If one is contained in another.

Ragavan.C1, Solairaju.A2 and Kaviyarasu.M3

µ AB (x) ≥ min {max{min{µ A (( x + z ) + (z + y)), µ B (( x + z ) + (z + y))},

{µ A ((z + x) + (y+ z )), µ B ((z + x) + (y+ z ))}}, max {min {µ A (y), µ B (y)}}}

µ AB (x) ≥ min {max {µ AB (( x + z ) + (z + y)), µ AB ((z + x) + (y+ z ))}, µ AB (y)}

Theorem 9: If μA is a fuzzy ideal in semi ring R then µAB is also fuzzy ideal in semi ring R.
Proof: For all x, y ∈ R. μA (x+y) ≥ min {μA (x), μA (y)} and μA (xy) ≥ μA (y), μA (xy) ≥ μA (x)

μB (x+y) ≥ min{μB (x), μB (y)} and μB (xy) ≥ μB (y), μB (xy) ≥ μB (x)

max {µ A ( x + y), µB ( x + y)} ≥ max {min {µ A ( x) + µ A ( y)} , min {µB ( x) + µB ( y)}}

If one is contained in another.

max {µ A ( xy), µB ( xy)} ≥ max {µ A (y), µB ( y)} , max {µ A ( xy), µB ( xy)} ≥ max {µ A (x), µB (x)}

µ AB (x + y) ≥ min {max {µ A ( x), µB ( x)} ,{max{µB (x), µB ( y)}} = min {µ AB (x), µ AB (y)}

µ AB (xy) ≥ µ AB (y), µ AB (xy) ≥ µ AB (x).

Theorem10.If μA is a fuzzy R- ideal in semi ring R then µAB is also fuzzy R- ideal in semi ring R.

Proof: For all x, y ∈ R. ∀x, y∈R. Now,

µ A (x) ≥ min {max {µ A (( x + z ) + (z+ y)), µ A ((z+ x) + (y+ z ))}, µ A (y)}

µ B (x) ≥ min {max {µ B (( x + z ) + (z+ y)), µ B ((z+ x) + (y+ z ))}, µ B (y)}

max{µ A (x), µ B (x)} ≥ max {min {max {µ A (( x + z ) + (z+ y)), µ A ((z+ x) + (y+ z ))}, µ A (y)},

min {max {µ B (( x + z ) + (z+ y)), µ B ((z+ x) + (y+ z ))}, µ B (y)}}

If one is contained in another .

µ AB (x) ≥ min{max{max{µ A (( x + z ) + (z+ y)), µ B (( x + z ) + (z+ y)),

{µ A ((z+ x) + (y+ z )), µ B ((z+ x) + (y+ z ))}}, max {max {µ A (y), µ B (y)}}

µ AB (x) ≥ min {max {µ AB (( x + z ) + (z+ y)), {µ AB ((z+ x) + (y+ z ))}}, µ AB (y)}

Theorem 11.If μA is an intuitionistic fuzzy ideal of semi ring R then µAB is an intuitionistic fuzzy ideal of semi

ring R of one is contains another.
Proof: If μA is a fuzzy ideal in semi ring R then µAB is also fuzzy ideal in semi ring R.
Proof: For all x, y ∈ R. μA (x+y) ≥ min {μA (x), μA (y)} and μA (xy) ≥ μA (y), μA (xy) ≥ μA (x)

μB (x+y) ≥ min{μB (x), μB (y)} and μB (xy) ≥ μB (y), μB (xy) ≥ μB (x)

min {µA ( x + y), µB ( x + y)} ≥ min {min {µA ( x), µA ( y)}, min {µB ( x) , µB ( y)}}

µAB (x + y) ≥ min {min {µA ( x), µB ( x)},{min{µB (x), µB ( y)}}

µAB (x + y) ≥ min {µAB (x), µAB (y)}

min {µA ( xy), µB ( xy)} ≥ min {µA (y), µB ( y)}, and min {µA ( xy), µB ( xy)} ≥ min {µA (x), µB (x)}

µAB (xy) ≥ µAB (y), µAB (xy) ≥ µAB (x).

Now ∀x, y∈R, now
λA (x+y) ≥ min {λA (x), λA(y)},λA (xy) ≥ λA (y), λA (xy) ≥ λA (x)

IJSER © 2014 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1472

ISSN 2229-5518

λB (x+y) ≥ min {λB (x), λB (y)} and λB (xy) ≥ λB (y), λB (xy) ≥ λB (x)

min {λA ( x + y), λB ( x + y)} ≥ min {max {λA ( x), λA ( y)}, max {λB ( x) + λB ( y)}}

λAB (x + y) ≥ max {min {λA ( x), λB ( x)},{min{λB (x), λB ( y)}}

λAB (x + y) ≥ max {min {λA ( x), λB ( x)},{min{λA (y), λB ( y)}}

λAB (x + y) ≥ max {λAB (x), λAB (y)}

Theorem 12if μA is an intuitionistic fuzzy- R ideal of semi ring R then µAB is an intuitionistic fuzzy –R ideal

of
semi ring R if one is contains another. proof: for all x, y,∈ R

µ A (x) ≥ min{max{µ A (( x + z ) + (z + y)), µ A ((z + x) + (y+ z ))}, µ A (y)}

µ B (x) ≥ min{max{µ B (( x + z ) + (z + y)), µ B ((z + x) + (y+ z ))}, µ B (y)} and

µ A (xy) ≥ µ A (y), µB (xy) ≥ µB (y)

min{µ A (x), µ B (x)} ≥ min{min{max{µ A (( x + z) + (z+ y)), µ A ((z+ x) + (y+ z))}, µ A (y)},
min{max{µ B (( x + z) + (z+ y)), µ B ((z+ x) + (y+ z))}, µ B (y)}}and,

On Intuitionistic Fuzzy R-Ideals

min{µ A (xy), µ A (xy) } ≥ min{µ A (y), µB (y)}

µ AB (x) ≥ min{max{min{µ A (( x + z ) + (z+ y)), µ B (( x + z ) + (z+ y)), µ A ((z+ x) + (y+ z )),

µ B ((z+ x) + (y+ z ))}}, min{µ A (y), µ B (y)}} and µ AB (xy) ≥ µ AB (y)

µ AB (x) ≥ min{max{µ AB (( x + z ) + (z+ y)), µ AB (( x + z ) + (z+ y))}, µ AB (y)},

and µ AB (xy) ≥ µ AB (y)

λ A (x) ≤ max{min{λ A (( x + z ) + (z+ y)), λ A ((z+ x) + (y+ z))}, λ A (y)}

λ B (x) ≤ max{min{λ B (( x + z ) + (z+ y)), λ B ((z+ x) + (y+ z))}, λB (y)} and

λ A (xy) ≤ λ A (y), λB (xy) ≤ λB (y)

max{λ A (x), λ B (x)} ≤ max{max{min{λ A (( x + z) + (z+ y)), λ A ((z+ x) + (y+ z))}, λ A (y)},

max{min{λ B (( x + z) + (z+ y)), λ B ((z+ x) + (y+ z))}, λ B (y)}} and,

max{λ A (xy), λ B (xy) } ≤ max{ λ A (y), λ B (y)}

λAB (x) ≤ max{min{max{λ A (( x + z) + (z+ y)), λ B (( x + z) + (z+ y)), λ A ((z+ x) + (y+ z)),

λ B ((z+ x) + (y+ z))}}, max{λ A (y), λ B (y)}} and λ AB (xy) ≤ λ AB (y)

λ AB (x) ≤ max{min{λ AB (( x + z ) + (z+ y)), λ AB (( x + z ) + (z+ y))}, λ AB (y)},

and λ AB (xy) ≤ λ AB (y)

13 if μA is an intuitionistic fuzzy- R ideal of semi ring R then µAB is an intuitionistic fuzzy –R ideal of semi ring

R if one is contains another.

IJSER © 2014 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 1473

ISSN 2229-5518

µ A (x) ≥ min{max{µ A (( x + z ) + (z+ y)), µ A ((z+ x) + (y+ z ))}, µ A (y)}

µ B (x) ≥ min{max{µ B (( x + z ) + (z+ y)), µ B ((z+ x) + (y+ z ))}, µ B (y)} and

µ A (xy) ≥ µ A (y), µB (xy) ≥ µB (y)

max{µ A (x), µ B (x)} ≥ max{min{max{µ A (( x + z ) + (z+ y)), µ A ((z+ x) + (y+ z ))}, µ A (y)},

min{max{µ B (( x + z ) + (z+ y)), µ B ((z+ x) + (y+ z ))}, µ B (y)}} and,

max{µ A (xy), µ A (xy) } ≥ max{µ A (y), µB (y)}

µ AB (x) ≥ max{min{max{µ A (( x + z ) + (z+ y)), µ B (( x + z ) + (z+ y)), µ A ((z+ x) + (y+ z )),

µ B ((z+ x) + (y+ z ))}}, max{µ A (y), µ B (y)}} and µ AB (xy) ≥ µ AB (y)

µ AB (x) ≥ min{max{µ AB (( x + z ) + (z+ y)), µ AB (( x + z ) + (z+ y))}, µ AB (y)},

and µ AB (xy) ≥ µ AB (y)

λ A (x) ≤ max{min{λ A (( x + z ) + (z+ y)), λ A ((z + x) + (y+ z ))}, λ A (y)}

λ B (x) ≤ max{min{λ B (( x + z ) + (z+ y)), λ B ((z + x) + (y+ z ))}, λB (y)} and

λ A (xy) ≤ λ A (y), λB (xy) ≤ λB (y)

max{λ A (x), λ B (x)} ≤ max{max{min{λ A (( x + z ) + (z+ y)), λ A ((z + x) + (y+ z ))}, λ A (y)},

max{min{λ B (( x + z ) + (z + y)), λ B ((z + x) + (y+ z ))}, λ B (y)}} and,

max{λ A (xy), λ B (xy) } ≤ max{ λ A (y), λ B (y)}

λAB (x) ≤ max{min{max{λ A (( x + z ) + (z + y)), λ B (( x + z ) + (z + y)), λ A ((z + x) + (y+ z )),

λ B ((z + x) + (y+ z ))}}, max{λ A (y), λ B (y)}} and λ AB (xy) ≤ λ AB (y)

λ AB (x) ≤ max{min{λ AB (( x + z ) + (z+ y)), λ AB (( x + z ) + (z+ y))}, λ AB (y)},

and λ AB (xy) ≤ λ AB (y)

References

1. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and systems, 20(1986), 87-96
2. K. T. Atanassov, New operations defined over the Intuitionistic fuzzy sets, Fuzzy sets and systems
61(1994), 137-142.
3. T. K. Dutta and B. K. Biwa’s, Fuzzy prime ideals of semi ring, Bull Malaysian Math. Soc.17 (1994), 9-16.
4. T. K. Dutta and B. K. Biwa’s, Fuzzy k-ideals of semi rings, Bull Malaysian Math. Soc.87 (1995), 91-96.
5. Y. B. Jun., J. Naggers and M.s.kim, On L-fuzzy ideals in semi rings I, Czech. Math.J.48 (1998).669-675.
6. K. H. Kim and J. G.Lee, On Intuitionistic fuzzy Bi-ideals of semi group, Turk J. Math. 20(2005),201-210.
7. K. H. Kim and J. G. Lee, On Intuitionistic Q-fuzzy semi ring ideals in semi groups, Advances in fuzzy
Mathematics, Vol.1 No.1 (2006), 15-21.
8W. J. Liu, Fuzzy invariants subgroups and fuzzy ideals, Fuzzy sets and systems 8(1987), 133-139.

IJSER © 2014 http://www.ijser.org